A209407 Primes p(i) such that p(i+1)/p(i) > p(k+1)/p(k) for all k>i, where p(i) is the i-th prime.
3, 7, 13, 23, 31, 47, 113, 139, 199, 211, 293, 317, 523, 1327, 1669, 1951, 2179, 2477, 2971, 3271, 4297, 4831, 5591, 5749, 5953, 6491, 6917, 7253, 8467, 9551, 9973, 10799, 11743, 15683, 19609, 31397, 34061, 35617, 35677, 43331, 44293, 45893, 48679, 58831
Offset: 1
Keywords
Examples
The smallest prime belonging to the sequence is p(2)=3 because p(3)/p(2) = 5/3 > 7/5, 11/7, 13/11, 17/13,... p(1)=2 does not belong to the sequence since p(2)/p(1) = 3/2 <5/3 = p(3)/p(2).
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..67
Programs
-
PARI
{np=200000;a=vector(44);q=vector(np,k,prime(k+1)/prime(k));m=n=0; while(n<=44,if(q[m++]>vecmax(vector(np-m,j,q[m+j])),a[n++]=prime(m)))} \\ computes the first 44 terms of sequence.
-
PARI
list(lim)=my(v=List([3]),u=List([2/3]),mn=.04/log(lim)^2,p=7,t);forprime(q=11,nextprime(lim+1),t=(q-p)/p;if(t>mn,if(t>u[#v],v[#v]=p;u[#u]=t,listput(v,p);listput(u,t)));p=q);t=u[#u];forstep(i=#u-1,6,-1,if(u[i]>t,t=u[i],v[i]=3));Set(v) \\ valid for lim > 396738; Charles R Greathouse IV, Jun 25 2014
Comments