cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186826 Riordan array (s(x),x*S(x)) where s(x) is the g.f. of the little Schroeder numbers A001003, and S(x) is the g.f. of the large Schroeder numbers A006318.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 11, 11, 5, 1, 45, 45, 23, 7, 1, 197, 197, 107, 39, 9, 1, 903, 903, 509, 205, 59, 11, 1, 4279, 4279, 2473, 1061, 347, 83, 13, 1, 20793, 20793, 12235, 5483, 1949, 541, 111, 15, 1, 103049, 103049, 61463, 28435, 10717, 3285, 795, 143, 17, 1, 518859, 518859, 312761, 148249, 58351, 19199, 5197, 1117, 179, 19, 1
Offset: 0

Views

Author

Paul Barry, Feb 27 2011

Keywords

Comments

Reverse of A144944. Inverse of A186827.

Examples

			Triangle begins
       1;
       1,      1;
       3,      3,      1;
      11,     11,      5,      1;
      45,     45,     23,      7,     1;
     197,    197,    107,     39,     9,     1;
     903,    903,    509,    205,    59,    11,    1;
    4279,   4279,   2473,   1061,   347,    83,   13,    1;
   20793,  20793,  12235,   5483,  1949,   541,  111,   15,   1;
  103049, 103049,  61463,  28435, 10717,  3285,  795,  143,  17,  1;
  518859, 518859, 312761, 148249, 58351, 19199, 5197, 1117, 179, 19, 1;
Production matrix of this triangle begins
  1, 1;
  2, 2, 1;
  2, 2, 2, 1;
  2, 2, 2, 2, 1;
  2, 2, 2, 2, 2, 1;
  2, 2, 2, 2, 2, 2, 1;
  2, 2, 2, 2, 2, 2, 2, 1;
  2, 2, 2, 2, 2, 2, 2, 2, 1;
  2, 2, 2, 2, 2, 2, 2, 2, 2, 1;
For instance, 107=1*45+2*23+2*7+2*1.
		

Crossrefs

Cf. A001003, A006318, A010683 (row sums), A144944 (row reverse), A186827 (inverse), A186828 (diagonal sums), A239204.

Programs

  • Haskell
    a186826 n k = a186826_tabl !! n !! k
    a186826_row n = a186826_tabl !! n
    a186826_tabl = map reverse a144944_tabl
    -- Reinhard Zumkeller, May 11 2013
    
  • Mathematica
    t[, 0]=1; t[p, p_]:= t[p, p]= t[p, p-1]; t[p_, q_]:= t[p, q]= t[p, q -1] + t[p-1, q] + t[p-1, q-1];
    Table[t[p, q], {p,0,10}, {q,p,0,-1}]//Flatten (* Jean-François Alcover, Jul 16 2019 *)
  • SageMath
    @CachedFunction
    def t(n,k):
        if (k<0 or k>n): return 0
        elif (k==0): return 1
        elif (kA186826(n,k): return t(n+2,n-k)
    flatten([[A186826(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Mar 11 2023

Formula

Riordan array ((1+x+sqrt(1-6*x+x^2))/(4*x), (1-x-sqrt(1-6*x+x^2))/2).
Sum_{k=0..n} T(n,k) = A010683(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A186828(n).
R(n,k) = k*Sum_{i=0..n-k} (A001003(i)/(n-i))*Sum_{m=0..n-k-i} binomial(n-i,m)*binomial(2*(n-i)-m-k-1, n-i-1), k>0, R(n,0) = A001003(n). - Vladimir Kruchinin, Mar 09 2011
Sum_{k=0..n} (-1)^k*T(n, k) = A239204(n-2). - G. C. Greubel, Mar 11 2023