cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187040 Numbers for which Midy's theorem holds.

Original entry on oeis.org

7, 11, 13, 14, 17, 19, 22, 23, 26, 28, 29, 34, 35, 38, 44, 46, 47, 49, 52, 55, 56, 58, 59, 61, 65, 68, 70, 73, 76, 77, 85, 88, 89, 91, 92, 94, 95, 97, 98, 101, 103, 104, 109, 110, 112, 113, 115, 116, 118, 121, 122, 127, 130, 131, 133, 136, 137, 139, 140, 143, 145, 146, 149, 152, 154, 157, 161, 167, 169, 170, 175, 176, 178, 179, 181, 182, 184, 188, 190, 193, 194, 196, 197
Offset: 1

Views

Author

Jani Melik, Mar 02 2011

Keywords

Comments

Martin gives generalizations of Midy's theorem that characterize the numbers in this sequence. See theorem 8. - T. D. Noe, Mar 02 2011
García-Pulgarín Gilberto and Giraldo Hernán give the characterization of the numbers that satisfy Midy's property.

Crossrefs

Programs

  • Maple
    fct1 := proc(an) local i,st:  st := 0:
    for i from 1 to nops(an)/2 do
       st := op(i,an)*10^(nops(an)/2-i) + st
    od: RETURN(st):  end:
    fct2 := proc(an) local i,st:  st := 0:
    for i from nops(an)/2+1 to nops(an) do
       st := op(i,an)*10^(nops(an)/2-i+nops(an)/2) + st
    od:  RETURN(st):  end:
    A187040 := proc(n) local st:
    st := op(4,numtheory[pdexpand](1/n));
    if (modp(nops(st),2) = 0) then
       if (10^(nops(st)/2)-1 - (fct1(st)+fct2(st)) = 0) then
          RETURN(n)
    fi: fi: end:  seq(A187040(n), n=2..200);
  • Mathematica
    okQ[n_] := Module[{ps = First /@ FactorInteger[n], d, len}, If[n < 2 || Complement[ps, {2, 5}] == {}, False, d = RealDigits[1/n, 10][[1, -1]]; len = Length[d]; EvenQ[len] && Union[Total[Partition[d, len/2]]] == {9}]]; Select[Range[200], okQ] (* T. D. Noe, Mar 02 2011 *)

Extensions

Corrected by T. D. Noe, Mar 02 2011