A187041 Numbers for which Midy's theorem does not hold.
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 21, 24, 25, 27, 30, 31, 32, 33, 36, 37, 39, 40, 41, 42, 43, 45, 48, 50, 51, 53, 54, 57, 60, 62, 63, 64, 66, 67, 69, 71, 72, 74, 75, 78, 79, 80, 81, 82, 83, 84, 86, 87, 90, 93, 96, 99, 100, 102, 105, 106, 107, 108, 111, 114, 117, 119, 120, 123, 124, 125, 126, 128, 129, 132, 134, 135, 138, 141, 142, 144, 147, 148, 150
Offset: 1
Links
- Wikipedia, Midy's theorem
Programs
-
Maple
fct1 := proc(an) local i,st: st := 0: for i from 1 to nops(an)/2 do st := op(i,an)*10^(nops(an)/2-i) + st od: RETURN(st): end: fct2 := proc(an) local i,st: st := 0: for i from nops(an)/2+1 to nops(an) do st := op(i,an)*10^(nops(an)/2-i+nops(an)/2) + st od: RETURN(st): end: A187041 := proc(n) local st: st := op(4,numtheory[pdexpand](1/n)); if (modp(nops(st),2) <> 0 or nops(st) = 1 or n = 1) then RETURN(n) elif (modp(nops(st),2) = 0) then if not(10^(nops(st)/2)-1 - (fct1(st)+fct2(st)) = 0) then RETURN(n) fi: fi: end: seq(A187041(n), n=1..250);
-
Mathematica
okQ[n_] := Module[{ps = First /@ FactorInteger[n], d, len}, If[n < 2 || Complement[ps, {2, 5}] == {}, False, d = RealDigits[1/n, 10][[1, -1]]; len = Length[d]; EvenQ[len] && Union[Total[Partition[d, len/2]]] == {9}]]; Select[Range[300], ! okQ[#] &] (* T. D. Noe, Mar 02 2011 *)
Extensions
Corrected by T. D. Noe, Mar 02 2011
Comments