A187063 Numbers of the form (4^k - 1)/3 whose greatest prime divisor is of the form 2^q - 1 or 2^q + 1.
5, 21, 85, 341, 5461, 21845, 22369621, 89478485, 1431655765, 5726623061, 91625968981, 1501199875790165, 1537228672809129301, 98382635059784275285, 1690200800304305868662270940501, 1772303994379887830538409413707126101
Offset: 1
Keywords
Examples
(4^6-1)/3 = 1365 = 3 * 5 * 7 * 13 is not in the sequence because 13 is not of the form 2^q +/- 1 ; (4^16-1)/3 = 1431655765 = 5 * 17 * 257 * 65537 and 65537 = 2^16 + 1.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..25
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; local k, t, d, h; for k from 1+ `if`(n=1, 0, ilog[4](a(n-1)*3+1)) do t:= (4^k-1)/3; d:= max(factorset(t)[]); for h in [d+1, d-1] do if 2^ilog[2](h)=h then RETURN(t) fi od od end: seq(a(n), n=1..17); # Alois P. Heinz, Mar 04 2011
-
Mathematica
okQ[n_] := Module[{p = FactorInteger[n][[-1, 1]]}, IntegerQ[Log[2, p + 1]] || IntegerQ[Log[2, p - 1]]]; t = Table[(4^n-1)/3, {n,2,50}]; Select[t, okQ] (* T. D. Noe, Mar 04 2011 *)
Comments