cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187065 Let i be in {1,2,3} and let r >= 0 be an integer. Let p = {p_1, p_2, p_3} = {-2,0,1}, n=2*r+p_i, and define a(-2)=1. Then, a(n)=a(2*r+p_i) gives the quantity of H_(7,1,0) tiles in a subdivided H_(7,i,r) tile after linear scaling by the factor x^r, where x=sqrt(2*cos(Pi/7)).

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 2, 1, 1, 3, 5, 4, 5, 9, 14, 14, 19, 28, 42, 47, 66, 89, 131, 155, 221, 286, 417, 507, 728, 924, 1341, 1652, 2380, 2993, 4334, 5373, 7753, 9707, 14041, 17460, 25213, 31501, 45542, 56714, 81927, 102256, 147798, 184183, 266110, 331981, 479779
Offset: 0

Views

Author

L. Edson Jeffery, Mar 09 2011

Keywords

Comments

(Start) See A187067 for supporting theory. Define the matrix
U_1= (0 1 0)
(1 0 1)
(0 1 1).
Let r>=0 and M=(m_(i,j))=(U_1)^r, i,j=1,2,3. Let A_r be the r-th "block" defined by A_r={a(2*r-2),a(2*r),a(2*r+1)} with a(-2)=1. Note that A_r-A_(r-1)-2*A_(r-2)+A_(r-3)={0,0,0}, with A_0={a(-2),a(0),a(1)}={1,0,0}. Let p={p_1,p_2,p_3}=(-2,0,1) and n=2*r+p_i. Then a(n)=a(2*r+p_i)=m_(i,1), where M=(m_(i,j))=(U_1)^r was defined above. Hence the block A_r corresponds component-wise to the first column of M, and a(n)=m_(i,1) gives the quantity of H_(7,1,0) tiles that should appear in a subdivided H_(7,i,r) tile. (End)
Combining blocks A_r, B_r and C_r, from this sequence, A187066 and A187067, respectively, as matrix columns [A_r,B_r,C_r] generates the matrix (U_1)^r, and a negative index (-1)*r yields the corresponding inverse [A_(-r),B_(-r),C_(-r)]=(U_1)^(-r) of (U_1)^r. Therefore, the three sequences need not be causal.
Since a(2*r-2)=a(2*(r-1)) for all r, this sequence arises by concatenation of first-column entries m_(2,1) and m_(3,1) from successive matrices M=(U_1)^r.
a(n+2)=A187067(n), a(2*n)=A096976(n+1), a(2*n+1)=A006053(n).

Examples

			Suppose r=3. Then
A_r = A_3 = {a(2*r-2),a(2*r),a(2*r+1)} = {a(4),a(6),a(7)} = {0,2,1},
corresponding to the entries in the first column of
  M = (U_2)^3 = (0 2 1)
                (2 1 3)
                (1 3 3).
Choose i=2 and set n=2*r+p_i. Then a(n) = a(2*r+p_i) = a(6+0) = a(6) = 2, which equals the entry in row 2 and column 1 of M. Hence a subdivided H_(7,2,3) tile should contain a(6) = m_(2,1) = 2 H_(7,1,0) tiles.
		

Crossrefs

Programs

  • Magma
    I:=[0,0,1,0,0,1]; [n le 6 select I[n] else Self(n-2)+2*Self(n-4)-Self(n-6): n in [1..60]]; // Vincenzo Librandi, Sep 18 2015
    
  • Mathematica
    LinearRecurrence[{0,1,0,2,0,-1},{0,0,1,0,0,1},50] (* Harvey P. Dale, Aug 15 2012 *)
    CoefficientList[Series[x^2 (1 - x^2 + x^3)/(1 - x^2 - 2 x^4 + x^6), {x, 0, 50}], x] (* Vincenzo Librandi, Sep 18 2015 *)
  • PARI
    my(x='x+O('x^50)); concat([0,0], Vec(x^2*(1-x^2+x^3)/(1-x^2-2*x^4 +x^6))) \\ G. C. Greubel, Jan 29 2018

Formula

Recurrence: a(n) = a(n-2) + 2*a(n-4) - a(n-6).
G.f.: x^2*(1-x^2+x^3)/(1-x^2-2*x^4+x^6).
Closed-form: a(n) = -(1/14)*((X_1 + Y_1*(-1)^(n-1))*((w_2)^2 - (w_3)^2)*(w_1)^(n-1) + (X_2 + Y_2*(-1)^(n-1))*((w_3)^2 - (w_1)^2)*(w_2)^(n-1) + (X_3 + Y_3*(-1)^(n-1))*((w_1)^2 - (w_2)^2)*(w_3)^(n-1)), where w_k = sqrt(2*(-1)^(k-1)*cos(k*Pi/7)), X_k = (w_k)^3 - w_k + 1 and Y_k = -(w_k)^3 + w_k + 1, k=1,2,3.

Extensions

More terms from Vincenzo Librandi, Sep 18 2015