A187072 Prime numbers chosen such that the even numbers that are the sum of two consecutive terms occur only once and occur as early as possible.
3, 3, 5, 5, 7, 7, 11, 5, 17, 3, 23, 5, 19, 11, 23, 13, 19, 19, 23, 17, 29, 19, 31, 13, 41, 11, 47, 13, 43, 19, 47, 17, 53, 19, 59, 17, 67, 7, 61, 19, 67, 23, 59, 29, 67, 31, 61, 41, 53, 47, 59, 53, 61, 43, 67, 41, 79, 37, 89, 29, 101, 23, 109, 13, 127, 7, 131, 5, 137, 7, 139, 11, 137, 17, 139, 13, 149, 11, 157, 7, 151, 19, 109, 67, 107, 59, 113, 67
Offset: 1
Examples
Primes: 3 3 5 5 7 7 11 5 17 3 23 5 19 11 23 13 19 19 23 Evens: 6 8 10 12 14 18 16 22 20 26 28 24 30 34 36 32 38 42
Links
Programs
-
Haskell
import Data.Set (Set, empty, member, insert) a187072 n = a187072_list !! (n-1) a187072_list = goldbach 0 a065091_list empty where goldbach :: Integer -> [Integer] -> Set Integer -> [Integer] goldbach q (p:ps) gbEven | qp `member` gbEven = goldbach q ps gbEven | otherwise = p : goldbach p a065091_list (insert qp gbEven) where qp = q + p -- performance bug fixed: Reinhard Zumkeller, Mar 06 2011
-
Mathematica
lastE=10; eList=Range[6,lastE,2]; evens[k_] := If[k<=Length[eList], eList[[k]], lastE+=2; AppendTo[eList,lastE]; lastE]; Join[{lastP=3}, Table[k=1; While[p=evens[k]-lastP; p<0 || !PrimeQ[p], k++]; eList=Delete[eList,k]; lastP=p, {999}]] (* T. D. Noe, Mar 04 2011 *) s={3,3}; ev={6}; a=3; Do[k=2; While[!FreeQ[ev,(b=a+(p=Prime[k]))],k++]; a=p; AppendTo[ev,b]; AppendTo[s,a], {3000}]; s (* Zak Seidov, Mar 03 2011 *)
Comments