cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187074 a(n) = 0 if and only if n is of the form 3*k or 4*k + 2, otherwise a(n) = 1.

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0
Offset: 1

Views

Author

Michael Somos, Mar 07 2011

Keywords

Comments

Characteristic function of A359380, numbers that are neither multiples of 3 nor of the form 4u+2. - Antti Karttunen, Dec 31 2022

Examples

			x + x^4 + x^5 + x^7 + x^8 + x^11 + x^13 + x^16 + x^17 + x^19 + x^20 + ...
		

Crossrefs

Characteristic function of A359380.
Cf. A000661, A011655, A152822, A359374, A359422 (Dirichlet inverse).

Programs

  • Mathematica
    PadRight[{}, 120, {1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0}] (* or *)
    Table[If[MemberQ[{0, 2, 3, 6, 9, 10}, Mod[n, 12]], 0, 1], {n, 120}] (* or *)
    Table[Boole@ Or[CoprimeQ[n, 12], MemberQ[{4, 8}, Mod[n, 12]]], {n, 120}] (* or *)
    Rest@ CoefficientList[Series[x (1 + x^4) (1 + x^3 + x^6)/(1 - x^12), {x, 0, 121}], x] (* Michael De Vlieger, Jul 16 2016 *)
    Table[Which[Mod[n,3]==0,0,Mod[n,4]==2,0,True,1],{n,120}] (* Harvey P. Dale, Aug 02 2021 *)
  • PARI
    {a(n) = [0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1][n%12 + 1]};
    
  • PARI
    {a(n) = n = abs(n); sumdiv( 12, k, (n%k == 0) * [ 1, -1, -1, 1, 0, 1, 0, 0, 0, 0, 0, -1][k] )};
    
  • PARI
    A187074(n) = ((n%3)&&(2!=(n%4))); \\ Antti Karttunen, Dec 31 2022

Formula

Euler transform of length 12 sequence [0, 0, 1, 1, 0, 0, 0, -1, -1, 0, 0, 1].
Moebius transform is length 12 sequence [1, -1, -1, 1, 0, 1, 0, 0, 0, 0, 0, -1].
a(n) is multiplicative with a(2^e) = 1 except a(2) = 0, a(3^e) = 0^e, a(p^e) = 1 if p>3.
G.f.: x * (1 + x^4) * (1 + x^3 + x^6) / (1 - x^12). a(n + 12) = a(-n) = a(n). a(3*n) = a(4*n + 2) = 0.
Dirichlet g.f. zeta(s)*(1-3^(-s))*(1+4^(-s)-2^(-s)). - R. J. Mathar, Mar 31 2011
a(n+5) = A000661(n)(mod 2). - John M. Campbell, Jul 15 2016
a(n) = A011655(n) * A152822(n). - Antti Karttunen, Dec 31 2022