cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187079 Decimal expansion of (sqrt(2 + e^e)/e)^e.

Original entry on oeis.org

3, 1, 4, 1, 5, 9, 9, 0, 0, 9, 4, 5, 1, 7, 6, 4, 7, 3, 8, 1, 2, 5, 3, 9, 7, 1, 5, 5, 2, 4, 1, 2, 8, 4, 9, 5, 7, 3, 3, 4, 2, 4, 5, 5, 1, 0, 4, 0, 7, 8, 2, 7, 0, 7, 2, 1, 9, 7, 5, 5, 5, 2, 0, 8, 6, 7, 7, 1, 1, 7, 2, 8, 5, 5, 0, 1, 3, 3, 2, 0, 9, 8, 7, 8, 2, 2, 1, 2, 6, 1, 1, 8, 6, 2, 2, 7, 3, 2, 7, 0, 8, 4, 5, 2, 2
Offset: 1

Views

Author

Arkadiusz Wesolowski, Mar 08 2011

Keywords

Comments

(sqrt(2 + e^e)/e)^e is an approximation to Pi that's correct to five decimal digits.

Examples

			(sqrt(2+e^e)/e)^e = 3.141599009451764738125397155...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (Sqrt(2+Exp(Exp(1)))/Exp(1))^Exp(1); // G. C. Greubel, Sep 29 2018
  • Maple
    evalf((sqrt(2+exp(1)^exp(1))/exp(1))^exp(1),120); # Muniru A Asiru, Sep 29 2018
  • Mathematica
    RealDigits[N[(Sqrt[2 + E^E]/E)^E, 200]][[1]] (* Arkadiusz Wesolowski, Mar 08 2011 *)
  • PARI
    default(realprecision, 200); e=exp(1); x=(sqrt(2+e^e)/e)^e; for(n=1, 200, d=floor(x); x=(x-d)*10; print1(d, ", ")); \\ Arkadiusz Wesolowski, Mar 08 2011