A187129 Consider all pairs of primes (p,q) with p+q = 2n, p <= q; a(n) is the sum of all the q's.
2, 3, 5, 12, 7, 18, 24, 24, 30, 47, 49, 55, 40, 59, 48, 100, 102, 50, 89, 120, 109, 136, 181, 158, 117, 199, 133, 170, 252, 133, 261, 300, 98, 267, 324, 279, 303, 419, 244, 303, 494, 345, 260, 593, 302, 343, 503, 207, 452, 612, 399, 488, 668, 526, 619, 872, 574, 540, 1082, 352, 475, 920, 273, 691, 865, 598, 523, 822, 725, 864, 1211
Offset: 2
Keywords
Examples
2*5 = 10 can be expressed as the sum of two primes in two ways: 3+7 and 5+5, so a(5) = 7+5 = 12.
Links
- Harvey P. Dale, Table of n, a(n) for n = 2..1000
Programs
-
Maple
with(numtheory); a:=n-> sum( (2*n-i)*( ((pi(i) - pi(i-1)) * (pi(2*n-i) - pi(2*n-i-1))) ), i = 1..n ); seq(a(k),k=1..100); # Wesley Ivan Hurt, Jan 20 2013
-
Mathematica
Table[Total[Select[IntegerPartitions[2*n,{2}],AllTrue[#,PrimeQ]&][[All,1]]],{n,2,100}] (* Harvey P. Dale, Aug 09 2020 *)
-
PARI
a(n) = my(s=0); forprime(p=1, n, if (isprime(2*n-p), s += 2*n-p)); s; \\ Michel Marcus, Apr 29 2021
Formula
a(n) = Sum_{i=1..n} (2*n-i) * c(i) * c(2*n-i), where c = A010051. - Wesley Ivan Hurt, Apr 29 2021
a(n) = sopf(A362640(n)), n>=2. - Wesley Ivan Hurt, Apr 28 2023