cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A187241 Number of ways to place 9 nonattacking bishops on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 1600, 389312, 22057472, 565532992, 8611750848, 90564534336, 720227187456, 4603893554496, 24675964279680, 114402835995392, 469601097840640, 1737913582100864, 5882030372643968, 18417596366384512, 53854324059153920, 148209412582029184, 386390343290393024, 959556901097413696
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 07 2011

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- 64 x^5 (5670 x^25 + 116100 x^24 + 2282283 x^23 + 25883910 x^22 + 220244661 x^21 + 1330673229 x^20 + 6121839129 x^19 + 21511823232 x^18 + 59645434477 x^17 + 131494649245 x^16 + 234424379246 x^15 + 339339084372 x^14 + 401937236082 x^13 + 389328811002 x^12 + 308645316626 x^11 + 199052247464 x^10 + 103780570480 x^9 + 43151321222 x^8 + 14078209111 x^7 + 3508317590 x^6 + 644755881 x^5 + 82579449 x^4 + 6782181 x^3 + 308200 x^2 + 5933 x + 25) / ((x - 1)^19 (x + 1)^13), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 02 2013 *)

Formula

a(n) = n^18/362880 - n^17/7560 + 181n^16/60480 - 14509n^15/340200 + 2101n^14/4860 - 101071n^13/30240 + 112406401n^12/5443200 - 143351879n^11/1360800 + 2465350549n^10/5443200 - 14081834n^9/8505 + 55888723201n^8/10886400 - 6055816813n^7/453600 + 155816526107n^6/5443200 - 13489156949n^5/272160 + 183801705823n^4/2721600 - 15816472541n^3/226800 + 30820237351n^2/604800 - 919392091n/40320 + 1101239/256 + (-n^12/5760 + 11n^11/1440 - 113n^10/720 + 51793n^9/25920 - 202873n^8/11520 + 3428791n^7/30240 - 1050169n^6/1920 + 8590259n^5/4320 - 1034689n^4/192 + 68481311n^3/6480 - 81534479n^2/5760 + 465686363n/40320 - 1101239/256)*(-1)^n.
G.f.: -64x^6*(5670x^25 + 116100x^24 + 2282283x^23 + 25883910x^22 + 220244661x^21 + 1330673229x^20 + 6121839129x^19 + 21511823232x^18 + 59645434477x^17 + 131494649245x^16 + 234424379246x^15 + 339339084372x^14 + 401937236082x^13 + 389328811002x^12 + 308645316626x^11 + 199052247464x^10 + 103780570480x^9 + 43151321222x^8 + 14078209111x^7 + 3508317590x^6 + 644755881x^5 + 82579449x^4 + 6782181x^3 + 308200x^2 + 5933x + 25)/((x-1)^19*(x+1)^13).
a(9) = A002465(9).

A189789 Number of ways to place 8 nonattacking bishops on an n x n toroidal board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 147456, 3265920, 129024000, 1097712000, 12939264000, 66784798080, 436483031040, 1669619952000, 7629571031040, 23828156352000, 85476013572096, 230333593351680, 693478195200000, 1669577821632000
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 27 2011

Keywords

Crossrefs

Programs

  • Mathematica
    (* Number of ways to place k nonattacking bishops on an n x n toroidal board *)
    tbishops[k_,n_]:=If[EvenQ[n],2^k*k!*Sum[Binomial[n/2,i]^2*Binomial[n/2,k-i]^2/Binomial[k,i],{i,0,k}],k!*Binomial[n,k]^2];
    Table[tbishops[8,n],{n,1,20}] (* using k=8 for this sequence *)

Formula

a(n) = (1/80640) * (n-6)^2 * (n-4)^2 * (n-2)^2 * n^2 * (2*n^8 - 64*n^7 + 884*n^6 - 7048*n^5 + 37382*n^4 - 147904*n^3 + 468540*n^2 - 1108800*n + 1422225 + (28*n^6 - 840*n^5 + 10906*n^4 - 80640*n^3 + 370468*n^2 - 1034880*n + 1400175) * (-1)^n)
G.f.: 1152x^8*(35x^23 + 21178x^22 + 27889x^21 + 2133348x^20 + 3081175x^19 + 51948910x^18 + 72476645x^17 + 469213640x^16 + 538879520x^15 + 1803221880x^14 + 1580004720x^13 + 3146148264x^12 + 2014875632x^11 + 2544618104x^10 + 1144092320x^9 + 933224520x^8 + 278242005x^7 + 143723790x^6 + 25756935x^5 + 7854820x^4 + 693025x^3 + 104538x^2 + 2579x + 128) / ((1-x)^17*(x+1)^15)

A378590 Total number of ways to place k nonattacking bishops on an n X n chess board. Triangle T(n,k) read by rows (0 <= k <= 2*n-[n>0]-[n>1]).

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 1, 9, 26, 26, 8, 1, 16, 92, 232, 260, 112, 16, 1, 25, 240, 1124, 2728, 3368, 1960, 440, 32, 1, 36, 520, 3896, 16428, 39680, 53744, 38368, 12944, 1600, 64, 1, 49, 994, 10894, 70792, 282248, 692320, 1022320, 867328, 389312, 81184, 5792, 128
Offset: 0

Views

Author

Eder G. Santos, Dec 01 2024

Keywords

Comments

The sequence counts every possible nonattacking configuration of k bishops on an n x n chess board.

Examples

			Triangle begins:
  1;
  1  1;
  1  4   4;
  1  9  26    26     8;
  1 16  92   232   260    112     16;
  1 25 240  1124  2728   3368   1960     440     32;
  1 36 520  3896 16428  39680  53744   38368  12944   1600    64;
  1 49 994 10894 70792 282248 692320 1022320 867328 389312 81184 5792 128;
  ...
For example, for n = 2, k=2, the T(2,2)=4 nonattacking configurations are:
  +---+---+   +---+---+   +---+---+   +---+---+
  | B | B |   | B |   |   |   | B |   |   |   |
  +---+---+ , +---+---+ , +---+---+ , +---+---+
  |   |   |   | B |   |   |   | B |   | B | B |
  +---+---+   +---+---+   +---+---+   +---+---+
		

Crossrefs

Columns k=0-1 give: A000012, A000290.
Columns k=2-10 for n>=1 give: A172123, A172124, A172127, A172129, A176886, A187239, A187240, A187241, A187242.
Main diagonal T(n,n) gives A002465.
Row sums give A201862.
Cf. A000079.

Programs

  • SageMath
    def stirling2_negativek(n,k):
      if k < 0: return 0
      else: return stirling_number2(n,k)
    print([sum([sum([binomial(floor(n/2),i)*stirling2_negativek(n-i,n-j)*sum([binomial(ceil(n/2),l)*stirling2_negativek(n-l,n-k+j) for l in [0..k-j]]) for i in [0..j]]) for j in [0..k]]) for n in [0..10] for k in [0..2*n-2+kronecker_delta(n,1)+2*kronecker_delta(n,0)]])

Formula

T(n,k) = Sum_{j=0..k} (Sum_{i=0..j} binomial(floor(n/2),i) * Stirling2(n-i,n-j)) * (Sum_{l=0..k-j} binomial(ceiling(n/2),l) * Stirling2(n-l,n-k+j)).
T(n,2*n-2+delta(n,1)+2*delta(n,0)) = A000079(n)-delta(n,1).
Showing 1-3 of 3 results.