cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187256 Number of peakless Motzkin paths of length n, assuming that the (1,0)-steps come in 2 colors.

Original entry on oeis.org

1, 2, 4, 10, 28, 82, 248, 770, 2440, 7858, 25644, 84618, 281844, 946338, 3199728, 10885122, 37230352, 127951714, 441633812, 1530242954, 5320853260, 18560408050, 64932101224, 227767796482, 800928670232, 2822814469394, 9969770245948, 35280714655498
Offset: 0

Views

Author

Emeric Deutsch, May 03 2011

Keywords

Comments

Ordinary peakless Motzkin paths are counted by A004148.
Also the number of Catalan words of length n avoiding the consecutive pattern 010. - Sela Fried, May 21 2025

Examples

			a(4)=28 because, denoting U=(1,1), D=(1,-1), and H=(1,0), we have 2^4=16 paths of shape HHHH, 2^2=4 paths of shape HUHD, 2^2 = 4 paths of shape UHDH, and 4 paths of shape UHHD.
		

Crossrefs

Column k=0 of A114848 (shifted). - Alois P. Heinz, Mar 31 2016

Programs

  • Maple
    eq := G = 1+2*z*G+z^2*G*(G-1): G := RootOf(eq, G): Gser := series(G, z = 0, 30): seq(coeff(Gser, z, n), n = 0 .. 27);
  • Mathematica
    CoefficientList[Series[(1 + (x-2)*x - Sqrt[(1 + (x-4)*x)*(1+x^2)])/(2*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 02 2014 *)
    a[n_] := 2^n HypergeometricPFQ[{-n/2, (1 - n)/2, (1 - n)/2, 1 - n/2}, {2, -n, -n + 1}, 4]; Array[a, 28, 0] (* Peter Luschny, Jan 25 2020 *)
  • Maxima
    a(n):=sum(((-1)^i*binomial(n-i,i)*binomial(2*n-4*i+2,n-2*i))/(n-2*i+1),i,0,(n)/2); /* Vladimir Kruchinin, Jun 01 2014 */
    
  • PARI
    my(x='x+O('x^50)); Vec((1 + (x-2)*x - sqrt((1 + (x-4)*x)*(1+x^2))) /( 2*x^2)) \\ G. C. Greubel, Feb 12 2017

Formula

G.f.: G(z) satisfies the equation G = 1 + 2*z*G + z^2*G*(G-1).
Conjecture: (n+2)*a(n) -2*(2*n+1)*a(n-1) +2*(n-1)*a(n-2) +2*(5-2*n)*a(n-3) +(n-4)*a(n-4) = 0. - R. J. Mathar, Nov 16 2011
a(n) = Sum_{i=0..n/2} (-1)^i*binomial(n-i,i)*binomial(2*n-4*i+2,n-2*i)/(n-2*i+1). - Vladimir Kruchinin, Jun 01 2014
a(n) ~ sqrt(24+14*sqrt(3)) * (2+sqrt(3))^n / (2*sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jun 02 2014
a(n) = 2^n*hypergeom([-n/2, (1 - n)/2, (1 - n)/2, 1 - n/2], [2, -n, -n + 1], 4). - Peter Luschny, Jan 25 2020