cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187275 a(n) = (n/4)*5^(n/2)*((1+sqrt(5))^2+(-1)^n*(1-sqrt(5))^2).

Original entry on oeis.org

0, 5, 30, 75, 300, 625, 2250, 4375, 15000, 28125, 93750, 171875, 562500, 1015625, 3281250, 5859375, 18750000, 33203125, 105468750, 185546875, 585937500, 1025390625, 3222656250, 5615234375, 17578125000, 30517578125, 95214843750, 164794921875, 512695312500, 885009765625, 2746582031250
Offset: 0

Views

Author

N. J. A. Sloane, Mar 07 2011

Keywords

Programs

  • Magma
    /* By definition: */ Z:=PolynomialRing(Integers()); N:=NumberField(x^2-5); [Integers()!((n/4)*r^n*((1+r)^2+(-1)^n*(1-r)^2)): n in [0..30]]; // Bruno Berselli, Mar 29 2016
    
  • Magma
    I:=[0,5,30,75]; [n le 4 select I[n] else 10*Self(n-2)-25*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Mar 29 2016
    
  • Maple
    See A187272.
  • Mathematica
    LinearRecurrence[{0, 10, 0, -25}, {0, 5, 30, 75}, 30] (* Vincenzo Librandi, Mar 29 2016 *)
  • Python
    def A187275(n): return n*5**(1+(n>>1)) if n&1 else 3*n*5**(n>>1) # Chai Wah Wu, Feb 19 2024

Formula

a(n) = 10*a(n-2) - 25*a(n-4). - Colin Barker, Jul 25 2013
G.f.: 5*x*(x+1)*(5*x+1) / (5*x^2-1)^2. - Colin Barker, Jul 25 2013
a(2*n) = 6*n*5^n, a(2*n+1) = (2*n+1)*5^(n+1). - Andrew Howroyd, Mar 28 2016