cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A187428 Expansion of q^(-5/24) * eta(q^3)^3 / eta(q)^4 in powers of q.

Original entry on oeis.org

1, 4, 14, 37, 93, 210, 454, 925, 1824, 3463, 6408, 11538, 20353, 35161, 59726, 99775, 164337, 266978, 428521, 679861, 1067415, 1659205, 2555617, 3902055, 5909867, 8881849, 13252334, 19637281, 28909989, 42297267, 61520450, 88976461, 127996994
Offset: 0

Views

Author

Michael Somos, Mar 09 2011

Keywords

Examples

			1 + 4*x + 14*x^2 + 37*x^3 + 93*x^4 + 210*x^5 + 454*x^6 + 925*x^7 + ...
q^5 + 4*q^29 + 14*q^53 + 37*q^77 + 93*q^101 + 210*q^125 + 454*q^149 + ...
		

Crossrefs

Cf. A187427.

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1 - x^(3*k))^3 / (1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *)
    eta[q_] := q^(1/24)*QPochhammer[q]; CoefficientList[Series[q^(-5/24) *eta[q^3]^3/eta[q]^4, {q, 0, 50}], q] (* G. C. Greubel, Aug 14 2018 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^3 / eta(x + A)^4, n))}

Formula

Euler transform of period 3 sequence [ 4, 4, 1, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (576 t)) = 648^(-1/2) (t/i)^(-1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A187427.
G.f.: Product_{k>0} (1 - x^(3*k))^3 / (1 - x^k)^4.
a(n) ~ exp(sqrt(2*n)*Pi)/(12*sqrt(3)*n). - Vaclav Kotesovec, Sep 07 2015
Showing 1-1 of 1 results.