cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A187427 Expansion of q^(3/8) * eta(q)^3 / eta(q^3)^4 in powers of q.

Original entry on oeis.org

1, -3, 0, 9, -12, 0, 27, -42, 0, 82, -111, 0, 207, -279, 0, 486, -630, 0, 1055, -1362, 0, 2205, -2775, 0, 4374, -5472, 0, 8427, -10389, 0, 15696, -19224, 0, 28539, -34614, 0, 50630, -61059, 0, 88119, -105483, 0, 150417, -179178, 0, 252727, -299325, 0, 418068
Offset: 0

Views

Author

Michael Somos, Mar 09 2011

Keywords

Examples

			1 - 3*x + 9*x^3 - 12*x^4 + 27*x^6 - 42*x^7 + 82*x^9 - 111*x^10 + ...
q^-3 - 3*q^5 + 9*q^21 - 12*q^29 + 27*q^45 - 42*q^53 + 82*q^69 - 111*q^77 + ...
		

Crossrefs

Programs

  • Mathematica
    QP = QPochhammer; s = QP[q]^3/QP[q^3]^4 + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015 *)
    eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[q^(3/8) *eta[q]^3/ eta[q^3]^4, {q, 0, 50}], q] (* G. C. Greubel, Aug 14 2018 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3 / eta(x^3 + A)^4, n))}

Formula

Euler transform of period 3 sequence [ -3, -3, 1, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (1728 t)) = (9/8)^(1/2) (t/i)^(-1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A187428.
G.f.: Product_{k>0} (1 - x^k)^3 / (1 - x^(3*k))^4.
a(3*n) = A053762(n). a(3*n + 1) = -3 * A187428(n). a(3*n + 2) = 0.

A187429 Expansion of q^(3/8) * a(q) / eta(q^3)^3 in powers of q where a() is a cubic AGM function.

Original entry on oeis.org

1, 6, 0, 9, 24, 0, 27, 84, 0, 82, 222, 0, 207, 558, 0, 486, 1260, 0, 1055, 2724, 0, 2205, 5550, 0, 4374, 10944, 0, 8427, 20778, 0, 15696, 38448, 0, 28539, 69228, 0, 50630, 122118, 0, 88119, 210966, 0, 150417, 358356, 0, 252727, 598650, 0, 418068, 986022
Offset: 0

Views

Author

Michael Somos, Mar 09 2011

Keywords

Examples

			G.f. = 1 + 6*x + 9*x^3 + 24*x^4 + 27*x^6 + 84*x^7 + 82*x^9 + 222*x^10 + ...
G.f. = q^-3 + 6*q^5 + 9*q^21 + 24*q^29 + 27*q^45 + 84*q^53 + 82*q^69 + 222*q^77 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{A = x*O[x]^n}, SeriesCoefficient[(QPochhammer[x + A]^3 + 9*x*QPochhammer[x^9 + A]^3)/QPochhammer[x^3 + A]^4, {x, 0, n}]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 06 2015, adapted from PARI *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 + 9 * x * eta(x^9 + A)^3) / eta(x^3 + A)^4, n))}

Formula

Expansion of q^(3/8) * (eta(q)^3 + 9 * eta(q^9)^3) / eta(q^3)^4 in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (192 t)) = (3/8)^(1/2) (t/i)^(-1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A053762.
a(3*n) = A053762(n). a(3*n+ 1) = 6 * A187428(n). a(3*n + 2) = 0.
Showing 1-2 of 2 results.