cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187654 Binomial cumulative sums of the (signless) central Stirling numbers of the first kind (A187646).

Original entry on oeis.org

1, 2, 14, 262, 7740, 305536, 15061692, 890220752, 61347750704, 4829414749504, 427559293150976, 42047904926171552, 4547772798257998256, 536504774914535869664, 68557641564333466819744, 9433619169586732241895776
Offset: 0

Views

Author

Emanuele Munarini, Mar 12 2011

Keywords

Crossrefs

Cf. A187646.

Programs

  • Maple
    seq(sum(binomial(n,k)*abs(combinat[stirling1](2*k,k)),k=0..n),n=0..12);
  • Mathematica
    Table[Sum[Binomial[n, k]Abs[StirlingS1[2k, k]], {k, 0, n}], {n, 0, 15}]
  • Maxima
    makelist(sum(binomial(n,k)*abs(stirling1(2*k,k)),k,0,n),n,0,12);
    
  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*abs(stirling(2*k, k, 1))); \\ Michel Marcus, Aug 03 2021

Formula

a(n) = Sum_{k=0..n} binomial(n,k)*s(2k,k).
a(n) ~ exp((2*c-1)/(8*c^2)) * abs(Stirling1(2*n,n)) ~ 2^(3*n-1) * n^n * exp((2*c-1)/(8*c^2)-n) * c^(2*n) / (sqrt(Pi*n*(c-1)) * (2*c-1)^n), where c = -LambertW(-1,-exp(-1/2)/2) = 1.7564312086261696769827376166... - Vaclav Kotesovec, May 21 2014