A187654 Binomial cumulative sums of the (signless) central Stirling numbers of the first kind (A187646).
1, 2, 14, 262, 7740, 305536, 15061692, 890220752, 61347750704, 4829414749504, 427559293150976, 42047904926171552, 4547772798257998256, 536504774914535869664, 68557641564333466819744, 9433619169586732241895776
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
Crossrefs
Cf. A187646.
Programs
-
Maple
seq(sum(binomial(n,k)*abs(combinat[stirling1](2*k,k)),k=0..n),n=0..12);
-
Mathematica
Table[Sum[Binomial[n, k]Abs[StirlingS1[2k, k]], {k, 0, n}], {n, 0, 15}]
-
Maxima
makelist(sum(binomial(n,k)*abs(stirling1(2*k,k)),k,0,n),n,0,12);
-
PARI
a(n) = sum(k=0, n, binomial(n, k)*abs(stirling(2*k, k, 1))); \\ Michel Marcus, Aug 03 2021
Formula
a(n) = Sum_{k=0..n} binomial(n,k)*s(2k,k).
a(n) ~ exp((2*c-1)/(8*c^2)) * abs(Stirling1(2*n,n)) ~ 2^(3*n-1) * n^n * exp((2*c-1)/(8*c^2)-n) * c^(2*n) / (sqrt(Pi*n*(c-1)) * (2*c-1)^n), where c = -LambertW(-1,-exp(-1/2)/2) = 1.7564312086261696769827376166... - Vaclav Kotesovec, May 21 2014