cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187661 Binomial convolution of the (signless) central Stirling numbers of the first kind and the central Stirling numbers of the second kind.

Original entry on oeis.org

1, 2, 20, 369, 10192, 379850, 17930697, 1027046517, 69216504576, 5363945384274, 469658243947850, 45827641349686636, 4928867833029014503, 579101340954599901152, 73778702335232336908585, 10129059530832922239925140
Offset: 0

Views

Author

Emanuele Munarini, Mar 12 2011

Keywords

Crossrefs

Programs

  • Maple
    seq(sum(binomial(n,k) * abs(combinat[stirling1](2*k, k)) * combinat[stirling2](2*(n-k), n-k), k=0..n), n=0..12);
  • Mathematica
    Table[Sum[Binomial[n, k]Abs[StirlingS1[2k, k]]StirlingS2[2n - 2k, n - k], {k, 0, n}], {n, 0, 15}]
  • Maxima
    makelist(sum(binomial(n,k)*abs(stirling1(2*k,k))*stirling2(2*n-2*k,n-k),k,0,n),n,0,12);
    
  • PARI
    a(n) = sum(k=0, n, binomial(n,k)*abs(stirling(2*k, k, 1)*stirling(2*(n-k), n-k, 2))); \\ Michel Marcus, May 28 2017

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * s(2*k,k) * S(2*n-2*k,n-k).
a(n) ~ m * n^n * c^(2*n) * 2^(3*n-1) / (sqrt(Pi*(c-1)*n) * exp(n) * (2*c-1)^n), where c = -LambertW(-1,-exp(-1/2)/2) = 1.75643120862616967698..., and m = Sum_{j>=0} StirlingS2(2*j,j) * (2*c-1)^j / (j! * 2^(3*j) * c^(2*j)) = 1.170003674502655133465266152119563086693466... . - Vaclav Kotesovec, May 22 2014