cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187741 G.f.: Sum_{n>=0} (1 + n*x)^n * x^n / (1 + x + n*x^2)^n.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 12, 24, 60, 120, 360, 720, 2520, 5040, 20160, 40320, 181440, 362880, 1814400, 3628800, 19958400, 39916800, 239500800, 479001600, 3113510400, 6227020800, 43589145600, 87178291200, 653837184000, 1307674368000, 10461394944000, 20922789888000
Offset: 0

Views

Author

Paul D. Hanna, Jan 03 2013

Keywords

Comments

This is an enumeration of the disjoint union (with repetition) of A001710(n), for n > 0, and A000142(n), for n > 0. The first lists the orders of the alternating groups; the second lists the orders of the symmetric groups. - Hal M. Switkay, Mar 13 2023

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 12*x^6 + 24*x^7 + 60*x^8 +...
where
A(x) = 1 + (1+x)*x/(1+x+x^2) + (1+2*x)^2*x^2/(1+x+2*x^2)^2 + (1+3*x)^3*x^3/(1+x+3*x^2)^3 + (1+4*x)^4*x^4/(1+x+4*x^2)^4 + (1+5*x)^5*x^5/(1+x+5*x^2)^5 +...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := If[OddQ[n], ((n + 1)/2)!, (n/2 + 1)!/2]; a[0] = 1; Array[a, 32, 0] (* Amiram Eldar, Dec 11 2022 *)
  • PARI
    {a(n)=polcoeff( sum(m=0, n, (x+m*x^2)^m / (1 + x+m*x^2 +x*O(x^n))^m), n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    {a(n)=if(n==0,1, if(n%2==0, ((n+2)/2)!/2, ((n+1)/2)! ))}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f.: 1/2 + (1+2*x) * Sum_{n>=0} (n+1)!*x^(2*n)/2.
a(2*n) = (n+1)!/2, a(2*n-1) = n!, for n>0 with a(0)=1.
From Amiram Eldar, Dec 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 3*e - 4.
Sum_{n>=0} (-1)^n/a(n) = e - 2. (End)