cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187778 Numbers k dividing psi(k), where psi is the Dedekind psi function (A001615).

Original entry on oeis.org

1, 6, 12, 18, 24, 36, 48, 54, 72, 96, 108, 144, 162, 192, 216, 288, 324, 384, 432, 486, 576, 648, 768, 864, 972, 1152, 1296, 1458, 1536, 1728, 1944, 2304, 2592, 2916, 3072, 3456, 3888, 4374, 4608, 5184, 5832, 6144, 6912, 7776, 8748, 9216, 10368, 11664, 12288, 13122, 13824, 15552, 17496, 18432, 20736, 23328
Offset: 1

Views

Author

Keywords

Comments

This sequence is closed under multiplication.
Also 1 and the numbers where psi(n)/n = 2, or n/phi(n)=3, or psi(n)/phi(n)=6.
Also 1 and the numbers of the form 2^i*3^j with i, j >= 1 (A033845).
If M(n) is the n X n matrix whose elements m(i,j) = 2^i*3^j, with i, j >= 1, then det(M(n))=0.
Numbers n such that Product_{i=1..q} (1 + 1/d(i)) is an integer where q is the number of the distinct prime divisors d(i) of n. - Michel Lagneau, Jun 17 2016

Examples

			psi(48) = 96 and 96/48 = 2 so 48 is in this sequence.
		

References

  • S. Ramanujan, Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962, p. xxiv.

Crossrefs

Programs

  • Magma
    [6*n: n in [1..3000] | PrimeDivisors(n) subset [2, 3]]; // Vincenzo Librandi, Jan 11 2019
  • Mathematica
    Select[Range[10^4],#/EulerPhi[#]==3 || #==1&]
    Join[{1}, 6 Select[Range@4000, Last@Map[First, FactorInteger@#]<=3 &]] (* Vincenzo Librandi, Jan 11 2019 *)
  • PARI
    dedekindpsi(n) = if( n<1, 0, direuler( p=2, n, (1 + X) / (1 - p*X)) [n]);
    k=0; n=0; while(k<10000,n++; if( dedekindpsi(n) % n== 0, k++; print1(n, ", ")));
    

Formula

For n > 1, a(n) = 6 * A003586(n).
Sum_{n>0} 1/a(n)^k = 1 + Sum_{i>0} Sum_{j>0} 1/(2^i * 3^j)^k = 1 + 1/((2^k-1)*(3^k-1)).