A187778 Numbers k dividing psi(k), where psi is the Dedekind psi function (A001615).
1, 6, 12, 18, 24, 36, 48, 54, 72, 96, 108, 144, 162, 192, 216, 288, 324, 384, 432, 486, 576, 648, 768, 864, 972, 1152, 1296, 1458, 1536, 1728, 1944, 2304, 2592, 2916, 3072, 3456, 3888, 4374, 4608, 5184, 5832, 6144, 6912, 7776, 8748, 9216, 10368, 11664, 12288, 13122, 13824, 15552, 17496, 18432, 20736, 23328
Offset: 1
Keywords
Examples
psi(48) = 96 and 96/48 = 2 so 48 is in this sequence.
References
- S. Ramanujan, Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962, p. xxiv.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..191 from Vincenzo Librandi)
- R. Blecksmith, M. McCallum and J. L. Selfridge, 3-smooth representations of integers, Amer. Math. Monthly, 105 (1998), 529-543.
- E. Deutsch, Tree statistics from Matula numbers, arXiv:1111.4288 [math.CO], 2011.
- Eric Weisstein's World of Mathematics, Smooth Number
- Wikipedia, Closure
Programs
-
Magma
[6*n: n in [1..3000] | PrimeDivisors(n) subset [2, 3]]; // Vincenzo Librandi, Jan 11 2019
-
Mathematica
Select[Range[10^4],#/EulerPhi[#]==3 || #==1&] Join[{1}, 6 Select[Range@4000, Last@Map[First, FactorInteger@#]<=3 &]] (* Vincenzo Librandi, Jan 11 2019 *)
-
PARI
dedekindpsi(n) = if( n<1, 0, direuler( p=2, n, (1 + X) / (1 - p*X)) [n]); k=0; n=0; while(k<10000,n++; if( dedekindpsi(n) % n== 0, k++; print1(n, ", ")));
Formula
For n > 1, a(n) = 6 * A003586(n).
Sum_{n>0} 1/a(n)^k = 1 + Sum_{i>0} Sum_{j>0} 1/(2^i * 3^j)^k = 1 + 1/((2^k-1)*(3^k-1)).
Comments