cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187784 Triangular array read by rows: T(n,k) is the number of ordered set partitions of {1,2,...,n} with exactly k singletons, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 1, 6, 0, 6, 7, 8, 36, 0, 24, 21, 100, 60, 240, 0, 120, 141, 372, 1170, 480, 1800, 0, 720, 743, 3584, 5166, 13440, 4200, 15120, 0, 5040, 5699, 22864, 67368, 68544, 159600, 40320, 141120, 0, 40320, 42241, 225684, 502200, 1161216, 922320, 1995840, 423360, 1451520, 0, 362880
Offset: 0

Views

Author

Geoffrey Critzer, Jan 05 2013

Keywords

Comments

A singleton is a set that contains exactly one element.
Column for k=0 is A032032.
Row sums are A000670.
Main diagonal is A000142.

Examples

			:    1;
:    0,     1;
:    1,     0,     2;
:    1,     6,     0,     6;
:    7,     8,    36,     0,     24;
:   21,   100,    60,   240,      0,   120;
:  141,   372,  1170,   480,   1800,     0,    720;
:  743,  3584,  5166, 13440,   4200, 15120,      0, 5040;
: 5699, 22864, 67368, 68544, 159600, 40320, 141120,    0, 40320;
		

Crossrefs

Programs

  • Maple
    with(combinat):
    b:= proc(n, i, p) option remember; `if`(n=0, p!,
          `if`(i<2, 0, add(multinomial(n, n-i*j, i$j)
          *b(n-i*j, i-1, p+j)/j!, j=0..n/i)))
        end:
    T:= (n, k)-> binomial(n, k)*b(n-k$2, k):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Sep 06 2015
  • Mathematica
    nn=8;Range[0,nn]!CoefficientList[Series[1/(2-Exp[x]+x-y x),{x,0,nn}],{x,y}]//Grid

Formula

E.g.f.: 1/(2 - exp(x) + x - y*x).