A187784 Triangular array read by rows: T(n,k) is the number of ordered set partitions of {1,2,...,n} with exactly k singletons, n>=0, 0<=k<=n.
1, 0, 1, 1, 0, 2, 1, 6, 0, 6, 7, 8, 36, 0, 24, 21, 100, 60, 240, 0, 120, 141, 372, 1170, 480, 1800, 0, 720, 743, 3584, 5166, 13440, 4200, 15120, 0, 5040, 5699, 22864, 67368, 68544, 159600, 40320, 141120, 0, 40320, 42241, 225684, 502200, 1161216, 922320, 1995840, 423360, 1451520, 0, 362880
Offset: 0
Examples
: 1; : 0, 1; : 1, 0, 2; : 1, 6, 0, 6; : 7, 8, 36, 0, 24; : 21, 100, 60, 240, 0, 120; : 141, 372, 1170, 480, 1800, 0, 720; : 743, 3584, 5166, 13440, 4200, 15120, 0, 5040; : 5699, 22864, 67368, 68544, 159600, 40320, 141120, 0, 40320;
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Programs
-
Maple
with(combinat): b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<2, 0, add(multinomial(n, n-i*j, i$j) *b(n-i*j, i-1, p+j)/j!, j=0..n/i))) end: T:= (n, k)-> binomial(n, k)*b(n-k$2, k): seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Sep 06 2015
-
Mathematica
nn=8;Range[0,nn]!CoefficientList[Series[1/(2-Exp[x]+x-y x),{x,0,nn}],{x,y}]//Grid
Formula
E.g.f.: 1/(2 - exp(x) + x - y*x).
Comments