cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A052841 Expansion of e.g.f.: 1/(exp(x)*(2-exp(x))).

Original entry on oeis.org

1, 0, 2, 6, 38, 270, 2342, 23646, 272918, 3543630, 51123782, 811316286, 14045783798, 263429174190, 5320671485222, 115141595488926, 2657827340990678, 65185383514567950, 1692767331628422662, 46400793659664205566, 1338843898122192101558, 40562412499252036940910
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

From Michael Somos, Mar 04 2004: (Start)
Stirling transform of A005359(n)=[0,2,0,24,0,720,...] is a(n)=[0,2,6,38,270,...].
Stirling transform of -(-1)^n*A052657(n-1)=[0,0,2,-6,48,-240,...] is a(n-1)=[0,0,2,6,38,270,...].
Stirling transform of -(-1)^n*A052558(n-1)=[1,-1,4,-12,72,-360,...] is a(n-1)=[1,0,2,6,38,270,...].
Stirling transform of 2*A052591(n)=[2,4,24,96,...] is a(n+1)=[2,6,38,270,...].
(End)
Also the central moments of a Geometric(1/2) random variable (for example the number of coin tosses until the first head). - Svante Janson, Dec 10 2012
Also the number of ordered set partitions of {1..n} with no cyclical adjacencies (successive elements in the same block, where 1 is a successor of n). - Gus Wiseman, Feb 13 2019
Also the number of ordered set partitions of {1..n} with an even number of blocks. - Geoffrey Critzer, Jul 04 2020

Examples

			From _Gus Wiseman_, Feb 13 2019: (Start)
The a(4) = 38 ordered set partitions with no cyclical adjacencies:
  {{1}{2}{3}{4}}  {{1}{24}{3}}  {{13}{24}}
  {{1}{2}{4}{3}}  {{1}{3}{24}}  {{24}{13}}
  {{1}{3}{2}{4}}  {{13}{2}{4}}
  {{1}{3}{4}{2}}  {{13}{4}{2}}
  {{1}{4}{2}{3}}  {{2}{13}{4}}
  {{1}{4}{3}{2}}  {{2}{4}{13}}
  {{2}{1}{3}{4}}  {{24}{1}{3}}
  {{2}{1}{4}{3}}  {{24}{3}{1}}
  {{2}{3}{1}{4}}  {{3}{1}{24}}
  {{2}{3}{4}{1}}  {{3}{24}{1}}
  {{2}{4}{1}{3}}  {{4}{13}{2}}
  {{2}{4}{3}{1}}  {{4}{2}{13}}
  {{3}{1}{2}{4}}
  {{3}{1}{4}{2}}
  {{3}{2}{1}{4}}
  {{3}{2}{4}{1}}
  {{3}{4}{1}{2}}
  {{3}{4}{2}{1}}
  {{4}{1}{2}{3}}
  {{4}{1}{3}{2}}
  {{4}{2}{1}{3}}
  {{4}{2}{3}{1}}
  {{4}{3}{1}{2}}
  {{4}{3}{2}{1}}
(End)
		

Crossrefs

Main diagonal of A122101.
Inverse binomial transform of A000670.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40);
    Coefficients(R!(Laplace( Exp(-x)/(2-Exp(x)) ))); // G. C. Greubel, Jun 11 2024
    
  • Maple
    spec := [S,{B=Prod(C,C),C=Set(Z,1 <= card),S=Sequence(B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    P := proc(n,x) option remember; if n = 0 then 1 else
    (n*x+2*(1-x))*P(n-1,x)+x*(1-x)*diff(P(n-1,x),x); expand(%) fi end:
    A052841 := n -> subs(x=2, P(n,x)):
    seq(A052841(n), n=0..21); # Peter Luschny, Mar 07 2014
    h := n -> add(combinat:-eulerian1(n, k)*2^k, k=0..n):
    a := n -> (h(n)+(-1)^n)/2: seq(a(n), n=0..21); # Peter Luschny, Sep 19 2015
    b := proc(n, m) option remember; if n = 0 then 1 else
         (m - 1)*b(n - 1, m) + (m + 1)*b(n - 1, m + 1) fi end:
    a := n -> b(n, 0): seq(a(n), n = 0..21); # Peter Luschny, Jun 23 2023
  • Mathematica
    a[n_] := If[n == 0, 1, (PolyLog[-n, 1/2]/2 + (-1)^n)/2]; (* or *)
    a[n_] := HurwitzLerchPhi[1/2, -n, -1]/2; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Feb 19 2016, after Vladeta Jovovic *)
    With[{nn=30},CoefficientList[Series[1/(Exp[x](2-Exp[x])),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Apr 08 2019 *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(subst(1/(1-y^2),y,exp(x+x*O(x^n))-1),n))
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n,(2*m)!*x^(2*m)/prod(k=1,2*m,1-k*x+x*O(x^n))),n)} /* Paul D. Hanna, Jul 20 2011 */
    
  • SageMath
    def A052841_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp(-x)/(2-exp(x)) ).egf_to_ogf().list()
    A052841_list(40) # G. C. Greubel, Jun 11 2024

Formula

O.g.f.: Sum_{n>=0} (2*n)! * x^(2*n) / Product_{k=1..2*n} (1-k*x). - Paul D. Hanna, Jul 20 2011
a(n) = (A000670(n) + (-1)^n)/2 = Sum_{k>=0} (k-1)^n/2^(k+1). - Vladeta Jovovic, Feb 02 2003
Also, a(n) = Sum_{k=0..[n/2]} (2k)!*Stirling2(n, 2k). - Ralf Stephan, May 23 2004
a(n) = D^n*(1/(1-x^2)) evaluated at x = 0, where D is the operator (1+x)*d/dx. Cf. A000670 and A005649. - Peter Bala, Nov 25 2011
E.g.f.: 1/(2*G(0)), where G(k) = 1 - 2^k/(2 - 4*x/(2*x - 2^k*(k+1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 22 2012
a(n) ~ n!/(4*(log(2))^(n+1)). - Vaclav Kotesovec, Aug 10 2013
a(n) = (h(n)+(-1)^n)/2 where h(n) = Sum_{k=0..n} E(n,k)*2^k and E(n,k) the Eulerian numbers A173018 (see also A156365). - Peter Luschny, Sep 19 2015
a(n) = (-1)^n + Sum_{k=0..n-1} binomial(n,k) * a(k). - Ilya Gutkovskiy, Jun 11 2020

Extensions

Edited by N. J. A. Sloane, Sep 06 2013

A124323 Triangle read by rows: T(n,k) is the number of partitions of an n-set having k singleton blocks (0<=k<=n).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 3, 0, 1, 4, 4, 6, 0, 1, 11, 20, 10, 10, 0, 1, 41, 66, 60, 20, 15, 0, 1, 162, 287, 231, 140, 35, 21, 0, 1, 715, 1296, 1148, 616, 280, 56, 28, 0, 1, 3425, 6435, 5832, 3444, 1386, 504, 84, 36, 0, 1, 17722, 34250, 32175, 19440, 8610, 2772, 840, 120, 45, 0, 1
Offset: 0

Views

Author

Emeric Deutsch, Oct 28 2006

Keywords

Comments

Row sums are the Bell numbers (A000110). T(n,0)=A000296(n). T(n,k) = binomial(n,k)*T(n-k,0). Sum(k*T(n,k),k=0..n) = A052889(n) = n*B(n-1), where B(q) are the Bell numbers (A000110).
Exponential Riordan array [exp(exp(x)-1-x),x]. - Paul Barry, Apr 23 2009
Sum_{k=0..n} T(n,k)*2^k = A000110(n+1) is the number of binary relations on an n-set that are both symmetric and transitive. - Geoffrey Critzer, Jul 25 2014
Also the number of set partitions of {1, ..., n} with k cyclical adjacencies (successive elements in the same block, where 1 is a successor of n). Unlike A250104, we count {{1}} as having 1 cyclical adjacency. - Gus Wiseman, Feb 13 2019

Examples

			T(4,2)=6 because we have 12|3|4, 13|2|4, 14|2|3, 1|23|4, 1|24|3 and 1|2|34 (if we take {1,2,3,4} as our 4-set).
Triangle starts:
     1
     0    1
     1    0    1
     1    3    0    1
     4    4    6    0    1
    11   20   10   10    0    1
    41   66   60   20   15    0    1
   162  287  231  140   35   21    0    1
   715 1296 1148  616  280   56   28    0    1
  3425 6435 5832 3444 1386  504   84   36    0    1
From _Gus Wiseman_, Feb 13 2019: (Start)
Row n = 5 counts the following set partitions by number of singletons:
  {{1234}}    {{1}{234}}  {{1}{2}{34}}  {{1}{2}{3}{4}}
  {{12}{34}}  {{123}{4}}  {{1}{23}{4}}
  {{13}{24}}  {{124}{3}}  {{12}{3}{4}}
  {{14}{23}}  {{134}{2}}  {{1}{24}{3}}
                          {{13}{2}{4}}
                          {{14}{2}{3}}
... and the following set partitions by number of cyclical adjacencies:
  {{13}{24}}      {{1}{2}{34}}  {{1}{234}}  {{1234}}
  {{1}{24}{3}}    {{1}{23}{4}}  {{12}{34}}
  {{13}{2}{4}}    {{12}{3}{4}}  {{123}{4}}
  {{1}{2}{3}{4}}  {{14}{2}{3}}  {{124}{3}}
                                {{134}{2}}
                                {{14}{23}}
(End)
From _Paul Barry_, Apr 23 2009: (Start)
Production matrix is
0, 1,
1, 0, 1,
1, 2, 0, 1,
1, 3, 3, 0, 1,
1, 4, 6, 4, 0, 1,
1, 5, 10, 10, 5, 0, 1,
1, 6, 15, 20, 15, 6, 0, 1,
1, 7, 21, 35, 35, 21, 7, 0, 1,
1, 8, 28, 56, 70, 56, 28, 8, 0, 1 (End)
		

Crossrefs

A250104 is an essentially identical triangle, differing only in row 1.
For columns see A000296, A250105, A250106, A250107.

Programs

  • Maple
    G:=exp(exp(z)-1+(t-1)*z): Gser:=simplify(series(G,z=0,14)): for n from 0 to 11 do P[n]:=sort(n!*coeff(Gser,z,n)) od: for n from 0 to 11 do seq(coeff(P[n],t,k),k=0..n) od; # yields sequence in triangular form
    # Program from R. J. Mathar, Jan 22 2015:
    A124323 := proc(n,k)
        binomial(n,k)*A000296(n-k) ;
    end proc:
  • Mathematica
    Flatten[CoefficientList[Range[0,10]! CoefficientList[Series[Exp[x y] Exp[Exp[x] - x - 1], {x, 0,10}], x], y]] (* Geoffrey Critzer, Nov 24 2011 *)
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],Count[#,{}]==k&]],{n,0,9},{k,0,n}] (* _Gus Wiseman, Feb 13 2019 *)

Formula

T(n,k) = binomial(n,k)*[(-1)^(n-k)+sum((-1)^(j-1)*B(n-k-j), j=1..n-k)], where B(q) are the Bell numbers (A000110).
E.g.f.: G(t,z) = exp(exp(z)-1+(t-1)*z).
G.f.: 1/(1-xy-x^2/(1-xy-x-2x^2/(1-xy-2x-3x^2/(1-xy-3x-4x^2/(1-... (continued fraction). - Paul Barry, Apr 23 2009
Showing 1-2 of 2 results.