A187787 Numbers k such that 2^(k+1) == 1 (mod k).
1, 3, 15, 35, 119, 255, 455, 1295, 2555, 2703, 3815, 3855, 4355, 5543, 6479, 8007, 9215, 10439, 10619, 11951, 16211, 22895, 23435, 26319, 26795, 27839, 28679, 35207, 43055, 44099, 47519, 47879, 49679, 51119, 57239, 61919, 62567, 63167, 63935, 65535, 74447, 79055
Offset: 1
Keywords
Examples
3 is in the sequence because 2^(3+1) mod 3 = 16 mod 3 = 1.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
for n from 1 to 100000 do if 2&^(n+1) mod n = 1 then print(n) fi od;
-
Mathematica
m = 1; Join[Select[Range[1, m], Divisible[2^(# + 1), #] &], Select[Range[m + 1, 10^5], PowerMod[2, # + 1, #] == m &]] (* Robert Price, Oct 11 2018 *) Join[{1},Select[Range[80000],PowerMod[2,#+1,#]==1&]] (* Harvey P. Dale, Aug 19 2019 *)
-
PARI
for (n=1,10^7, if (Mod(2,n)^(n+1)==1,print1(n,", "))); /* Joerg Arndt, Jan 06 2013 */
Extensions
Term a(1)=1 prepended by Max Alekseyev, Nov 29 2014
Comments