cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A128122 Numbers m such that 2^m == 6 (mod m).

Original entry on oeis.org

1, 2, 10669, 6611474, 43070220513807782
Offset: 1

Views

Author

Alexander Adamchuk, Feb 15 2007

Keywords

Comments

No other terms below 10^17. - Max Alekseyev, Nov 18 2022
A large term: 862*(2^861-3)/281437921287063162726198552345362315020202285185118249390789 (203 digits). - Max Alekseyev, Sep 24 2016

Examples

			2 == 6 (mod 1), so 1 is a term;
4 == 6 (mod 2), so 2 is a term.
		

Crossrefs

Solutions to 2^m == k (mod m): A000079 (k=0),A187787 (k=1/2), A296369 (k=-1/2), A006521 (k=-1), A296370 (k=3/2), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), this sequence (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12)

Programs

  • Mathematica
    m = 6; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

1 and 2 added by N. J. A. Sloane, Apr 23 2007
a(5) from Max Alekseyev, Nov 18 2022

A296369 Numbers m such that 2^m == -1/2 (mod m).

Original entry on oeis.org

1, 5, 65, 377, 1189, 1469, 25805, 58589, 134945, 137345, 170585, 272609, 285389, 420209, 538733, 592409, 618449, 680705, 778805, 1163065, 1520441, 1700945, 2099201, 2831009, 4020029, 4174169, 4516109, 5059889, 5215769
Offset: 1

Views

Author

Max Alekseyev, Dec 10 2017

Keywords

Comments

Equivalently, 2^(m+1) == -1 (mod m), or m divides 2^(m+1) + 1.
The sequence is infinite, see A055685.

Crossrefs

Solutions to 2^m == k (mod m): A296370 (k=3/2), A187787 (k=1/2), this sequence (k=-1/2), A000079 (k=0), A006521 (k=-1), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), A128122 (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12)

Programs

  • Mathematica
    Select[Range[10^5], Divisible[2^(# + 1) + 1, #] &] (* Robert Price, Oct 11 2018 *)
  • Python
    A296369_list = [n for n in range(1,10**6) if pow(2,n+1,n) == n-1] # Chai Wah Wu, Nov 04 2019

Formula

a(n) = A055685(n) - 1.

Extensions

Incorrect term 4285389 removed by Chai Wah Wu, Nov 04 2019

A081856 Numbers k such that 2k-1 divides 2^k-1.

Original entry on oeis.org

1, 2, 8, 128, 228, 648, 1352, 1908, 3240, 4608, 5220, 5976, 11448, 13160, 13920, 21528, 22050, 23760, 23940, 24840, 30960, 31284, 31584, 31968, 32768, 37224, 46092, 46512, 47268, 60480, 65664, 66528, 78540, 78600, 81728, 82800, 84312, 98406, 102672, 103968
Offset: 1

Views

Author

Benoit Cloitre, Apr 11 2003

Keywords

Comments

Subsequence of odd terms is given by A233415. - Charles R Greathouse IV, Dec 04 2013
Numbers 2k-1 form a subsequence of A187787. - Max Alekseyev, Sep 04 2024

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local k;
          if n=1 then 1 else for k from 1+a(n-1)
          while 2&^k mod(2*k-1)<>1 do od; k fi
        end:
    seq(a(n), n=1..40);  # Alois P. Heinz, May 27 2016
  • Mathematica
    terms = 100; Reap[For[n=1; k=1, k <= terms, n++, If[Divisible[2^n-1, 2n-1], Print[k, " ", n]; Sow[n]; k++]]][[2, 1]] (* Jean-François Alcover, Apr 06 2017 *)
    Join[{1},Select[Range[110000],PowerMod[2,#,2*#-1]==1&]] (* Harvey P. Dale, Jan 19 2019 *)
  • PARI
    is(n)=Mod(2,2*n-1)^n==1 \\ Charles R Greathouse IV, Dec 04 2013

Extensions

a(38)-a(40) from Michel Marcus, Dec 04 2013

A233415 Odd numbers k such that 2k-1 divides 2^k-1.

Original entry on oeis.org

1, 763425, 10888425, 40068105, 142086921, 191345625, 462784725, 468545025, 552451809, 595018305, 683993905, 956917125, 1013987349, 1024992045, 1567781325, 1581567885, 3094868865, 3312888345, 4839991545, 4882263477, 5064476505, 5613455925, 7303900125
Offset: 1

Views

Author

Keywords

Comments

These seem to be much rarer than the corresponding even numbers.

Crossrefs

Subsequence of A081856.
Numbers 2a(n)-1 form a subsequence of A187787.

Programs

  • PARI
    is(n)=n%2 && Mod(2, 2*n-1)^n==1

A296370 Numbers m such that 2^m == 3/2 (mod m).

Original entry on oeis.org

1, 111481, 465793, 79036177, 1781269903307, 250369632905747, 708229497085909, 15673900819204067
Offset: 1

Views

Author

Max Alekseyev, Dec 11 2017

Keywords

Comments

Equivalently, 2^(m+1) == 3 (mod m).
Also, numbers m such that 2^(m+1) - 2 is a Fermat pseudoprime base 2, i.e., 2^(m+1) - 2 belongs to A015919 and A006935.
Some larger terms (may be not in order): 2338990834231272653581, 341569682872976768698011746141903924998969680637.

Crossrefs

Solutions to 2^m == k (mod m): this sequence (k=3/2), A187787 (k=1/2), A296369 (k=-1/2), A000079 (k=0), A006521 (k=-1), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), A128122 (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12)

Programs

  • Mathematica
    Select[Range[10^6], Divisible[2^(# + 1) - 3, #] &] (* Robert Price, Oct 11 2018 *)

Formula

a(n) = A296104(n) - 1.

A069927 Numbers k that divide 2^(k+3) - 1.

Original entry on oeis.org

1, 3, 5, 9, 21, 45, 63, 85, 105, 117, 273, 285, 357, 585, 627, 765, 1365, 1397, 1449, 1677, 1989, 2337, 3597, 3705, 3885, 4221, 4365, 4485, 4797, 4953, 5061, 5607, 5797, 7137, 7521, 7565, 7665, 8109, 10197, 10545, 10845, 11445, 11565, 12597, 13065, 13717, 14637
Offset: 1

Views

Author

Benoit Cloitre, Apr 25 2002

Keywords

Examples

			k = 1 divides 2^(k+3) - 1 = 15, so 1 is a term.
		

Crossrefs

Cf. A187787.

Programs

  • Maple
    q:= k-> 0=(2&^(k+3)-1) mod k:
    select(q, [$1..20000])[];  # Alois P. Heinz, Apr 10 2025
  • Mathematica
    Select[Range[15000],PowerMod[2,#+3,#]==1&] (* Harvey P. Dale, Jul 09 2018 *)

Extensions

Missing term 1 inserted by Alois P. Heinz, Apr 10 2025

A307217 Semiprimes p*q such that 2^(p+q) == 1 (mod p*q).

Original entry on oeis.org

9, 15, 35, 119, 5543, 74447, 90859, 110767, 222179, 389993, 1526849, 2927297, 3626699, 4559939, 24017531, 137051711, 160832099, 229731743, 627699239, 880021141, 1001124539, 1041287603, 1104903617, 1592658611, 1717999139, 8843679683, 15575602979, 15614760199, 20374337479
Offset: 1

Views

Author

Thomas Ordowski, Mar 29 2019

Keywords

Comments

For k > 9, these are semiprimes k such that 2^(k+1) == 1 (mod k): semiprimes in A187787.
In this sequence, only 9 is a perfect square. - Jinyuan Wang, Mar 30 2019

Crossrefs

Programs

Extensions

a(7)-a(18) from Amiram Eldar, Mar 29 2019
a(19)-a(29) from Daniel Suteu, Mar 29 2019

A319538 Numbers k such that k divides 2^(2*k+1) - 1.

Original entry on oeis.org

1, 7, 217, 1057, 3937, 10447, 24601, 32767, 91657, 145337, 279527, 666967, 1412113, 2484247, 2874847, 3124327, 4169137, 4472167, 9526207, 12021439, 16539337, 16646017, 19384207, 20139367, 24639727, 28127137, 28940887, 30583087, 66131279, 68068777, 70694167, 72299857, 72903847, 73498471, 87507049
Offset: 1

Views

Author

Altug Alkan, Sep 22 2018

Keywords

Comments

Sequence is infinite because 2^A187787(t) - 1 is a term for all t >= 1.

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], Mod[2^(2 # + 1) - 1, #] == 0 &] (* Michael De Vlieger, Sep 24 2018 *)
  • PARI
    isok(n) = Mod(2, n)^(2*n+1)==1;

A334634 Numbers m that divide 2^m + 11.

Original entry on oeis.org

1, 13, 16043199041, 91118493923, 28047837698634913
Offset: 1

Views

Author

Max Alekseyev, Sep 10 2020

Keywords

Comments

Equivalently, numbers m such that 2^m == -11 (mod m).
No other terms below 10^17.

Crossrefs

Solutions to 2^n == k (mod n): A296370 (k=3/2), A187787 (k=1/2), A296369 (k=-1/2), A000079 (k=0), A006521 (k=-1), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), A128122 (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), this sequence (k=-11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12).

Extensions

a(5) from Sergey Paramonov, Oct 10 2021

A381010 Positive integers k such that 2^(k+2) - 1 is divisible by k.

Original entry on oeis.org

1, 7, 511, 713, 11023, 15553, 43873, 81079, 95263, 323593, 628153, 2275183, 6520633, 6955513, 7947583, 10817233, 12627943, 14223823, 15346303, 19852423, 27923663, 28529473, 29360527, 31019623, 39041863, 41007823, 79015273, 134217727, 143998193, 213444943, 227018383
Offset: 1

Views

Author

Oisín Flynn-Connolly, Apr 10 2025

Keywords

Comments

7 is the only prime term.

Crossrefs

Programs

  • Maple
    q:= k-> 0=(2&^(k+2)-1) mod k:
    select(q, [$1..1000000])[];  # Alois P. Heinz, Apr 10 2025
  • PARI
    isok(k) = Mod(2, k)^(k+2) == 1; \\ Michel Marcus, Apr 10 2025
  • Python
    def in_sequence(n):
        return pow(2, n + 2, n) == 1 % n
    
Showing 1-10 of 10 results.