cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A233415 Odd numbers k such that 2k-1 divides 2^k-1.

Original entry on oeis.org

1, 763425, 10888425, 40068105, 142086921, 191345625, 462784725, 468545025, 552451809, 595018305, 683993905, 956917125, 1013987349, 1024992045, 1567781325, 1581567885, 3094868865, 3312888345, 4839991545, 4882263477, 5064476505, 5613455925, 7303900125
Offset: 1

Views

Author

Keywords

Comments

These seem to be much rarer than the corresponding even numbers.

Crossrefs

Subsequence of A081856.
Numbers 2a(n)-1 form a subsequence of A187787.

Programs

  • PARI
    is(n)=n%2 && Mod(2, 2*n-1)^n==1

A247094 Integers of the form (2^k + 1)/(2k + 1).

Original entry on oeis.org

1, 2, 3, 5, 27, 565, 7085, 48771, 1266205, 9099507, 17602325, 128207979, 26494256091, 11147523830125, 84179432287299, 165269711096165, 281629680514649643, 4246732448623781667, 126774939137440139965, 1925041114036033717685, 14833445639443302757131
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 18 2014

Keywords

Comments

a(A103579(n)) is a subsequence.
Numbers n such that 2n + 1 divides 2^n + 1: 0, 1, 2, 5, 6, 9, 14, 18, 21, 26, 29, 30, 33, 41, 50, 53, ...

Examples

			1 is in this sequence because (2^1 + 1)/(2*1 + 1) = 1,
2 is in this sequence because (2^0 + 1)/(2*0 + 1) = 2,
3 is in this sequence because (2^5 + 1)/(2*5 + 1) = 3.
		

Crossrefs

Programs

  • PARI
    s=[]; for(k=0, 100, t=(2^k + 1)/(2*k + 1); if(type(t)=="t_INT", s=concat(s, t))); s=vecsort(s,,8) \\ Colin Barker, Nov 18 2014

Extensions

a(19) corrected by Colin Barker, Nov 18 2014

A273614 Numbers k such that 3k - 1 divides 3^k - 1.

Original entry on oeis.org

1, 9, 12, 96, 345, 432, 852, 945, 1452, 2160, 3480, 3753, 4800, 6561, 6984, 13230, 15840, 17040, 30210, 31008, 40320, 43776, 44352, 44652, 47628, 55200, 56940, 60420, 61065, 69312, 71145, 74100, 77400, 81504, 125580, 128016, 175952, 192240, 198168
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 26 2016

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..200000] | Modexp(3, n, 3*n-1) eq 1];
    
  • Maple
    a:= proc(n) option remember; local k;
          if n=1 then 1 else for k from 1+a(n-1)
          while 3&^k mod(3*k-1)<>1 do od; k fi
        end:
    seq(a(n), n=1..40);  # Alois P. Heinz, May 27 2016
  • Mathematica
    Select[Range[10^6], PowerMod[3, #, 3*# - 1] == 1 &] (* Giovanni Resta, May 27 2016 *)
  • PARI
    is(n)=Mod(3,3*n-1)^n==1 \\ Charles R Greathouse IV, May 29 2016

A233089 Numbers n such that 2n-1 and 2n+1 divide 2^n-1.

Original entry on oeis.org

8, 128, 228, 648, 3240, 5976, 13160, 23760, 23940, 24840, 32768, 37224, 78540, 82800, 139248, 166716, 238368, 278520, 280368, 288360, 516528, 633420, 664668, 731808, 734448, 1145520, 1211100, 1377240, 1425816, 1484568, 1627640, 2055060, 2131080, 2292780
Offset: 1

Views

Author

Michel Marcus, Dec 04 2013

Keywords

Comments

Intersection of A081856 and A081858.
Numbers n such that 4n^2-1 divides 2^n-1. - Charles R Greathouse IV, Dec 04 2013

Examples

			2^8-1=255 is divisible by 2*8-1=15 and by 2*8+1=17.
		

Programs

  • Mathematica
    Select[Range[23*10^5],PowerMod[2,#,2#+{1,-1}]=={1,1}&] (* Harvey P. Dale, Dec 19 2014 *)
  • PARI
    isok(n) = !((2^n-1) % (2*n-1)) && !((2^n-1) % (2*n+1));
    
  • PARI
    is(n)=Mod(2,4*n^2-1)^n==1 \\ Charles R Greathouse IV, Dec 04 2013

A247132 Numbers k such that 2k - 1 divides 2^k + 1.

Original entry on oeis.org

1, 194997, 1463649, 1957025, 4657005, 6464145, 17214725, 70930629, 76938345, 319359365, 336837501, 429872625, 486213525, 1343289717, 1831683645, 2163016845, 2430979425, 2950546137, 3463374005, 5031564525, 5608791441, 8993704797, 9596401485, 12556945401, 13492461125, 14559291285, 18429009725
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 20 2014

Keywords

Examples

			1 is in this sequence because (2^1 + 1)/(2*1 - 1) = 3.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..2000000] | Denominator((2^n + 1)/(2*n - 1)) eq 1];
    
  • Mathematica
    Select[Range[200000], IntegerQ[(2^# + 1) / (2 # - 1)] &] (* Vincenzo Librandi, Nov 20 2014 *)
  • PARI
    is(n)=Mod(2,2*n-1)^n==-1 \\ Charles R Greathouse IV, Nov 20 2014

Extensions

a(5)-a(27) from Charles R Greathouse IV, Nov 20 2014

A381923 a(n) is the least k >= 2 such that (2^k - 1) mod (n*k - 1) = 0.

Original entry on oeis.org

2, 2, 12, 4, 24, 216, 792, 32, 144, 4410, 396, 108, 208, 1880, 3192, 16, 9240, 72, 24, 6048, 264, 2160, 1872, 270, 20916, 104, 5292, 940, 360, 1596, 756, 8, 132, 4620, 1260, 36, 1728, 12, 49500, 3024, 7560, 3168, 1440, 1080, 2688, 936, 1344, 1035, 44100, 28800
Offset: 1

Views

Author

Ctibor O. Zizka, Mar 10 2025

Keywords

Comments

a(n) is even if n is odd. - Robert Israel, Mar 12 2025

Examples

			n = 1: (2^k - 1) mod (1*k - 1) = 0 is true for least k = 2, thus a(1) = 2.
n = 3: (2^k - 1) mod (3*k - 1) = 0 is true for least k = 12, thus a(3) = 12.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local k;
          for k from 2 by (n mod 2 + 1) do if 2 &^k - 1 mod (n*k-1) = 0 then return k fi od
    end proc:
    map(f, [$1..200]); # Robert Israel, Mar 12 2025
  • Mathematica
    a[n_] := Module[{k = 2}, While[n*k-1 != 1 && PowerMod[2, k, n*k-1] != 1, k++]; k]; Array[a, 50] (* Amiram Eldar, Mar 10 2025 *)
  • PARI
    a(n) = my(k=2); while (Mod(2, n*k-1)^k != 1, k++); k; \\ Michel Marcus, Mar 10 2025
Showing 1-6 of 6 results.