cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A081856 Numbers k such that 2k-1 divides 2^k-1.

Original entry on oeis.org

1, 2, 8, 128, 228, 648, 1352, 1908, 3240, 4608, 5220, 5976, 11448, 13160, 13920, 21528, 22050, 23760, 23940, 24840, 30960, 31284, 31584, 31968, 32768, 37224, 46092, 46512, 47268, 60480, 65664, 66528, 78540, 78600, 81728, 82800, 84312, 98406, 102672, 103968
Offset: 1

Views

Author

Benoit Cloitre, Apr 11 2003

Keywords

Comments

Subsequence of odd terms is given by A233415. - Charles R Greathouse IV, Dec 04 2013
Numbers 2k-1 form a subsequence of A187787. - Max Alekseyev, Sep 04 2024

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local k;
          if n=1 then 1 else for k from 1+a(n-1)
          while 2&^k mod(2*k-1)<>1 do od; k fi
        end:
    seq(a(n), n=1..40);  # Alois P. Heinz, May 27 2016
  • Mathematica
    terms = 100; Reap[For[n=1; k=1, k <= terms, n++, If[Divisible[2^n-1, 2n-1], Print[k, " ", n]; Sow[n]; k++]]][[2, 1]] (* Jean-François Alcover, Apr 06 2017 *)
    Join[{1},Select[Range[110000],PowerMod[2,#,2*#-1]==1&]] (* Harvey P. Dale, Jan 19 2019 *)
  • PARI
    is(n)=Mod(2,2*n-1)^n==1 \\ Charles R Greathouse IV, Dec 04 2013

Extensions

a(38)-a(40) from Michel Marcus, Dec 04 2013

A273614 Numbers k such that 3k - 1 divides 3^k - 1.

Original entry on oeis.org

1, 9, 12, 96, 345, 432, 852, 945, 1452, 2160, 3480, 3753, 4800, 6561, 6984, 13230, 15840, 17040, 30210, 31008, 40320, 43776, 44352, 44652, 47628, 55200, 56940, 60420, 61065, 69312, 71145, 74100, 77400, 81504, 125580, 128016, 175952, 192240, 198168
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 26 2016

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..200000] | Modexp(3, n, 3*n-1) eq 1];
    
  • Maple
    a:= proc(n) option remember; local k;
          if n=1 then 1 else for k from 1+a(n-1)
          while 3&^k mod(3*k-1)<>1 do od; k fi
        end:
    seq(a(n), n=1..40);  # Alois P. Heinz, May 27 2016
  • Mathematica
    Select[Range[10^6], PowerMod[3, #, 3*# - 1] == 1 &] (* Giovanni Resta, May 27 2016 *)
  • PARI
    is(n)=Mod(3,3*n-1)^n==1 \\ Charles R Greathouse IV, May 29 2016

A273727 Numbers k such that 3k - 1 divides 3^k - 1 and 3 does not divide k.

Original entry on oeis.org

1, 175952, 348880, 649078, 951625, 1495472, 1944320, 3140852, 3483200, 3643270, 4359040, 4703776, 6513584, 8170904, 9854200, 11005568, 11831890, 12149872, 12828200, 12910928, 18095630, 18964400, 22034516, 43599424, 62849024, 66322480, 82159588, 85181600
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 28 2016

Keywords

Crossrefs

Cf. A233415. Subsequence of A273614.

Programs

  • Mathematica
    Select[Range[10^6], Mod[#,3] > 0 && PowerMod[3, #, 3*#-1] == 1 &] (* Giovanni Resta, May 29 2016 *)
  • PARI
    is(n)=n%3 && Mod(3,3*n-1)^n==1 \\ Charles R Greathouse IV, May 29 2016

A273772 Least k > 1 such that n*(k*n-1) - 1 divides n^(k*n-1) - 1, or 0 if no such k exists.

Original entry on oeis.org

381713, 58651, 12301, 2861, 1656278791, 547, 5179643, 214, 2719331, 26627, 73651287679, 90205, 5069, 5533707, 13117, 58385, 791716066017, 5589, 21214381292, 3802401, 509437122973, 167, 1261552, 6001, 1144853, 3111, 6952504, 143573
Offset: 2

Views

Author

Juri-Stepan Gerasimov, May 29 2016

Keywords

Comments

Is gcd(n, a(n)) = 1? - David A. Corneth, Jun 02 2016
No: gcd(15, a(15)) = 3. - Charles R Greathouse IV, Jun 04 2016
If a(30) is not 0, then it exceeds 5 * 10^12. Terms a(31) through a(34) are 4219, 124522631, 305201, and 6475739899. - Lucas A. Brown, Feb 28 2024
1.1*10^16 < a(30) <= 123676617214883421968465. - Max Alekseyev, Sep 24 2024

Crossrefs

Programs

Extensions

a(3) corrected by Charles R Greathouse IV, Jun 02 2016
a(6)-a(17) from Charles R Greathouse IV, Jun 04 2016
a(18)-a(29) from Lucas A. Brown, Feb 28 2024
Showing 1-4 of 4 results.