cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187822 Smallest k such that the partial sums of the divisors of k (taken in increasing order) contain exactly n primes.

Original entry on oeis.org

1, 2, 4, 16, 64, 140, 440, 700, 1650, 2304, 5180, 3960, 3900, 14400, 15600, 43560, 39600, 57600, 56700, 81900, 25200, 112896, 100100, 177840, 198000, 411840, 222768, 226800, 637560, 752400, 556920, 907200, 409500, 565488, 1306800, 1984500, 1884960
Offset: 0

Views

Author

Michel Lagneau, Dec 27 2012

Keywords

Comments

It appears that a(n) is even for n > 0 and nonsquarefree for n > 1. We also conjecture that there is an infinite subsequence of squares 1, 4, 16, 64, 2304, 14400, 57600, 112896, ....
The corresponding triangle in which row n gives the n primes starts with:
k = 1 -> no prime
k = 2 -> 3;
k = 4 -> 3, 7;
k = 16 -> 3, 7, 31;
k = 64 -> 3, 7, 31, 127;
k = 140 -> 3, 7, 19, 29, 43;
k = 440 -> 3, 7, 41, 61, 83, 167; ...

Examples

			a(4) = 64 because the partial sums of the divisors {1, 2, 4, 8, 16, 32, 64} that generate 4 prime numbers are:
1 + 2 = 3;
1 + 2 + 4 = 7;
1 + 2 + 4 + 8 + 16  = 31;
1 + 2 + 4 + 8 + 16 + 32 + 64 = 127.
		

Crossrefs

Programs