cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187887 Riordan matrix (1/((1-x)*sqrt(1-4*x)),x/(1-x)).

Original entry on oeis.org

1, 3, 1, 9, 4, 1, 29, 13, 5, 1, 99, 42, 18, 6, 1, 351, 141, 60, 24, 7, 1, 1275, 492, 201, 84, 31, 8, 1, 4707, 1767, 693, 285, 115, 39, 9, 1, 17577, 6474, 2460, 978, 400, 154, 48, 10, 1, 66197, 24051, 8934, 3438, 1378, 554, 202, 58, 11, 1, 250953, 90248, 32985, 12372, 4816, 1932, 756, 260, 69, 12, 1
Offset: 0

Views

Author

Emanuele Munarini, Mar 15 2011

Keywords

Comments

Row sums are A082590.
First column is A006134.

Examples

			Triangle begins:
1,
3,1,
9,4,1,
29,13,5,1,
99,42,18,6,1,
351,141,60,24,7,1,
1275,492,201,84,31,8,1,
		

Programs

  • Mathematica
    Select[Flatten[Table[Sum[Binomial[n-i,k]Binomial[2i,i],{i,0,n}],{n,0,10},{k,0,10}]],#!=0&] (* Harvey P. Dale, Jul 05 2012 *)
  • Maxima
    create_list(sum(binomial(n-i,k)*binomial(2*i,i), i,0,n),n,0,8,k,0,n);

Formula

a(n,k) = [x^n] 1/((1-x)*sqrt(1-4*x))*(x/(1-x))^k.
Recurrence: a(n+1,k+1) = a(n,k+1) + a(n,k).
a(n,k) = sum(binomial(n-i,k)*binomial(2*i,i),i=0..n).
G.f.: 1/(sqrt(1-4*x)*(1-x-x*y)).

Extensions

Mathematica program corrected by Harvey P. Dale, Jul 05 2012
Comment added and comment corrected by Michel Marcus, Jun 23 2013