A188062 Triangle of the value of Bell polynomials of the second kind B(n,m)(6,30,120,360,720,720) in row n, column m.
6, 30, 36, 120, 540, 216, 360, 5580, 6480, 1296, 720, 46800, 124200, 64800, 7776, 720, 331920, 1895400, 1976400, 583200, 46656, 0, 1995840, 24736320, 46947600, 25855200, 4898880, 279936, 0, 9979200, 284074560, 946527120, 876355200, 297198720, 39191040, 1679616, 0, 39916800, 2900620800
Offset: 1
Examples
Table begins: 6; 30, 36; 120, 540, 216; 360, 5580, 6480, 1296; 720, 46800, 124200, 64800, 7776;
Links
- Ch. A. Charalambides, On the generalized discrete distributions and the Bell polynomials, Sankhya: Ind. J. Stat. B 39 (10) (1977) 36-44
- F. T. Howard, A theorem relating potential and bell polynomials, Discr. Math. 39 (2) (1982) 128-143.
- Vladimir Kruchinin, Derivation of Bell Polynomials of the Second Kind , arXiv:1104.5065 [math.CO], 2011.
- Eric W. Weisstein, Bell Polynomial
Programs
-
Maple
# The function BellMatrix is defined in A264428. # Adds (1,0,0,0, ..) as column 0. BellMatrix(n -> `if`(n<6,[6,30,120,360,720,720][n+1],0), 9); # Peter Luschny, Jan 29 2016
-
Mathematica
b[n_, m_] := n!/m!*Sum[ Sum[ 3^j*Binomial[j, n - 3*k - 3*m + 2*j]*Binomial[k + m, j], {j, 0, n}]*Binomial[m, k]*2^(m - k), {k, 0, n - m}]; Table[b[n, m], {n, 1, 9}, {m, 1, n}] // Flatten (* Jean-François Alcover, Feb 21 2013, translated from Maxima *) BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; rows = 12; B = BellMatrix[Function[n, If[n<6, {6, 30, 120, 360, 720, 720}[[n+1]], 0]], rows]; Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
-
Maxima
B(n,m):=n!/m!*sum(sum(3^j*binomial(j,n-3*k-3*m+2*j)*binomial(k+m,j),j,0,n)*binomial(m,k)*2^(m-k),k,0,n-m);
Formula
B(n,m) = n!/m!*sum_{k=0..m} binomial(m,k)*binomial(6*k,n)*(-1)^(m-k).
B(n,m) = n!/m! *sum_{k=0..n-m} sum_{j=0..n} 3^j *binomial(j,n-3*k-3*m+2*j) *binomial(k+m,j) *binomial(m,k) *2^(m-k).
Comments