cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188144 Binomial transform A140456(n+1) (indecomposable involutions).

Original entry on oeis.org

1, 2, 6, 20, 74, 292, 1218, 5308, 24034, 112484, 542346, 2686268, 13639226, 70863652, 376208706, 2038335580, 11259474754, 63353211332, 362819139978, 2113410084188, 12513610048154, 75274067489284, 459782361574146, 2850369932150908, 17926893505949986, 114337654086861092
Offset: 0

Views

Author

Groux Roland, Mar 22 2011

Keywords

Comments

a(n) is also the INVERTi transform of A005425(n+1) (self-inverse partial permutations) starting at n=2.

Crossrefs

Programs

  • Maple
    b:= proc(n) b(n):= `if`(n<2, n+1,  2*b(n-1) + (n-1)*b(n-2)) end:
    g:= proc(n) g(n):= `if`(n<1, -1, -add(g(n-i)*b(i), i=1..n)) end:
    a:= n-> g(n+2):
    seq(a(n), n=0..28);  # Alois P. Heinz, Mar 19 2020
  • Mathematica
    nmax = 18; A140456 = CoefficientList[ Series[1 - 1/Total[ CoefficientList[ Series[Exp[x^2/2 + x], {x, 0, nmax + 2}], x]*Range[0, nmax + 2]!* x^Range[0, nmax + 2]], {x, 0, nmax + 2}], x]; a[n_] := Sum[ Binomial[n, k]*A140456[[k + 3]], {k, 0, n}]; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Jul 03 2013 *)
  • PARI
    seq(n)={Vec(1 - 2*x - 1/serlaplace(exp( 2*x + x^2/2 + O(x^3*x^n) )))} \\ Andrew Howroyd, Jan 06 2020

Formula

a(n) is the moment of order n for the probability density function: sqrt(2/Pi^3)*exp((x-2)^2/2)/(1+(erfi((x-2)/sqrt(2)))^2) over the interval -infinity..infinity, with erfi the imaginary error function.
G.f.: A(x) = (1 - 2*x - G(0))/x^2; G(k) = 1 - 2*x - x^2*(k+1)/G(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Jan 26 2012

Extensions

Terms a(19) and beyond from Andrew Howroyd, Jan 06 2020