A188163 Smallest m such that A004001(m) = n.
1, 3, 5, 6, 9, 10, 11, 13, 17, 18, 19, 20, 22, 23, 25, 28, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 46, 49, 50, 52, 55, 59, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 87, 88, 89, 91, 92, 94, 97, 98, 100, 103, 107, 108, 110, 113, 117, 122
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- T. Kubo and R. Vakil, On Conway's recursive sequence, Discr. Math. 152 (1996), 225-252.
- User "Panurge", Frankl's conjecture and Oeis sequence A188163, Mathoverflow.net, Mar 29 2016.
- Eric Weisstein's World of Mathematics, Hofstadter-Conway $10,000 Sequence.
- Wikipedia, Hofstadter sequence
- Index entries for Hofstadter-type sequences
Crossrefs
Programs
-
Haskell
import Data.List (elemIndex) import Data.Maybe (fromJust) a188163 n = succ $ fromJust $ elemIndex n a004001_list
-
Magma
h:=[n le 2 select 1 else Self(Self(n-1)) + Self(n - Self(n-1)): n in [1..500]]; // h=A004001 A188163:= function(n) for j in [1..2*n+1] do if h[j] eq n then return j; end if; end for; end function; [A188163(n): n in [1..100]]; // G. C. Greubel, May 20 2024
-
Maple
A188163 := proc(n) for a from 1 do if A004001(a) = n then return a; end if; end do: end proc: # R. J. Mathar, May 15 2013
-
Mathematica
h[1] = 1; h[2] = 1; h[n_] := h[n] = h[h[n-1]] + h[n - h[n-1]]; a[n_] := For[m = 1, True, m++, If[h[m] == n, Return[m]]]; Array[a, 64] (* Jean-François Alcover, Jan 27 2018 *)
-
SageMath
@CachedFunction def h(n): return 1 if (n<3) else h(h(n-1)) + h(n - h(n-1)) # h=A004001 def A188163(n): for j in range(1,2*n+2): if h(j)==n: return j [A188163(n) for n in range(1,101)] # G. C. Greubel, May 20 2024
-
Scheme
(define A188163 (RECORD-POS 1 1 A004001)) ;; Code for A004001 given in that entry. Uses also my IntSeq-library. - Antti Karttunen, Jan 18 2016
Comments