cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188169 The number of divisors d of n of the form d == 1 (mod 8).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 2
Offset: 1

Views

Author

R. J. Mathar, Mar 23 2011

Keywords

Comments

a(n) >= 1 as the divisor d=1 is always counted.
The largest terms up to n = 10^6 are each equal to 24. Those 8 terms are for n = 675675, 765765, 799425, 855855, 863379, 883575, 945945, or 987525. - Harvey P. Dale, May 31 2017
From David A. Corneth, Apr 06 2021: (Start)
a(n) can be computed from the prime factorization of n. Let v(n) = (n1, n3, n5, n7) where n_r is the number of divisors of n in class r (mod 8) (we do not care about even remainders). Then if gcd(k, m) = 1 we have v(k) = (k1, k3, k5, k7) so a(k) = k1, v(m) = (m1, m3, m5, m7) so a(m) = k1.
We have a(k*m) = (km)_1 = k1*m1 + k2*m2 + k3*m3 + k4*m4. The other (km)_3..(km)_7 have a similar expression.
If p == 1 (mod 8) then a(p^e) = e + 1 otherwise floor(e/2) + 1. (End)

Crossrefs

Programs

  • Maple
    sigmamr := proc(n,m,r) local a,d ; a := 0 ; for d in numtheory[divisors](n) do if modp(d,m) = r then a := a+1 ; end if; end do: a; end proc:
    A188169 := proc(n) sigmamr(n,8,1) ; end proc:
  • Mathematica
    Table[Count[Divisors[n],?(Mod[#,8]==1&)],{n,100}] (* _Harvey P. Dale, May 31 2017 *)
  • PARI
    a(n) = {my(d = divisors(n)); #select(x -> x%8 == 1, d)} \\ David A. Corneth, Apr 06 2021
    
  • PARI
    \\ See PARI link. David A. Corneth, Apr 06 2021

Formula

a(n) + A188171(n) = A001826(n).
G.f.: Sum_{k>=1} x^k/(1 - x^(8*k)). - Ilya Gutkovskiy, Sep 11 2019
a(k) = a(2*k). - David A. Corneth, Apr 06 2021
Sum_{k=1..n} a(k) = n*log(n)/8 + c*n + O(n^(1/3)*log(n)), where c = gamma(1,8) - (1 - gamma)/8 = A256781 - (1 - A001620)/8 = 0.735783... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023