A188341 Numbers having no 0's and not more than one 1 in their representation in base 3.
1, 2, 5, 7, 8, 17, 23, 25, 26, 53, 71, 77, 79, 80, 161, 215, 233, 239, 241, 242, 485, 647, 701, 719, 725, 727, 728, 1457, 1943, 2105, 2159, 2177, 2183, 2185, 2186, 4373, 5831, 6317, 6479, 6533, 6551, 6557, 6559, 6560, 13121, 17495, 18953
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- V. Shevelev, Binomial Coefficient Predictors, Journal of Integer Sequences, Vol. 14 (2011), Article 11.2.8
Programs
-
Maple
a:= proc(n) option remember; local i, l, m, t; m:= `if`(n=1, 0, a(n-1)); l:= NULL; for t while m>0 do l:= l, irem(m, 3, 'm') od; l:= array([l, 0]); for i while l[i]=2 do od; if l[i]=0 then l[i]:= 1 else l[i]:= 2; if i>1 then l[i-1]:= 1 fi fi; add(l[i] *3^(i-1), i=1..t) end: seq(a(n), n=1..100); # Alois P. Heinz, Apr 02 2011
-
Mathematica
okQ[n_]:=DigitCount[n,3,0]==0&&DigitCount[n,3,1]<2; Select[Range[20000], okQ] (* Harvey P. Dale, Apr 16 2011 *)