A188480 a(n) = (n^4 + 16*n^3 + 65*n^2 + 26*n + 12)/12.
1, 10, 39, 99, 203, 366, 605, 939, 1389, 1978, 2731, 3675, 4839, 6254, 7953, 9971, 12345, 15114, 18319, 22003, 26211, 30990, 36389, 42459, 49253, 56826, 65235, 74539, 84799, 96078, 108441, 121955, 136689, 152714, 170103, 188931
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Cf. A188461.
Programs
-
Magma
[(n^4+16*n^3+65*n^2+26*n+12)/12: n in [0..90]]; // Vincenzo Librandi, Apr 05 2011
-
Mathematica
Table[(n^4+16n^3+65n^2+26n+12)/12,{n,0,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{1,10,39,99,203},40] (* Harvey P. Dale, Jan 23 2016 *)
-
PARI
a(n)=1+(n^4+16*n^3+65*n^2+26*n)/12 \\ Charles R Greathouse IV, May 04 2011
Formula
G.f.: (1 + 5*x - x^2 - 6*x^3 + 3*x^4)/(1-x)^5.
E.g.f.: exp(x)*(12 + 108*x + 120*x^2 + 22*x^3 + x^4)/12. - Stefano Spezia, Sep 06 2023
Comments