cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188465 Primes p such that p^2 divides 2^(2^(p-1)-1) - 1.

Original entry on oeis.org

7, 73, 127, 337, 487, 601, 881, 937, 1801, 2593, 2647, 3079, 3943, 4057, 4201, 6553, 7993, 9199, 10657, 14407, 15289, 16759, 18041, 18121, 20521, 20809, 21673, 22111, 24967, 25111, 26407, 28393, 28729, 36793, 39367, 41161, 42463, 47737, 47881, 49201, 49297
Offset: 1

Views

Author

Arkadiusz Wesolowski, Apr 10 2011

Keywords

Comments

Primes p that divide 2^(2^(p-1)-1) - 1 are the same terms. Proof: p | 2^(2^(p-1)-1) - 1 iff ord_{p}(2) | 2^(p-1)-1, so p^2 | 2^(2^(p-1)-1) - 1, since p | 2^(p-1)-1 by FLT. - Thomas Ordowski, Sep 16 2024

Crossrefs

Cf. A001220.

Programs

  • Maple
    isA188465 := proc(p) local m; if isprime(p) then m := modp(2 &^ ( (2 ^ (p-1))-1)-1,p) ; m := simplify(m) ; if m = 0 then true; else false; end if; else false; end if; end proc:
    for i from 1 do p := ithprime(i) ; if isA188465(p) then printf("%d\n",p) ; end if; end do: # R. J. Mathar, Apr 10 2011
  • Mathematica
    okQ[p_] := Module[{k = MultiplicativeOrder[2, p^2]}, PowerMod[2, p - 1, k] == 1]; Select[Prime[Range[5000]], okQ] (* T. D. Noe, Apr 11 2011 *)