cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188546 Numbers n such that m=(n^2+1)/2, p=(m^2+1)/2 and q=(p^2+1)/2 are all prime.

Original entry on oeis.org

69, 271, 349, 3001, 3399, 4949, 6051, 9101, 9751, 10099, 10149, 11719, 12281, 15911, 22569, 24269, 25201, 25889, 28841, 31979, 37271, 39901, 42109, 44929, 46399, 48321, 50811, 60009, 63659, 63999, 71051, 71851, 75089, 76711, 87029, 96791, 103701, 110551, 111411, 112461, 113949, 125721, 126089, 127959, 129261, 131859, 132939, 137481, 144651
Offset: 1

Views

Author

Zak Seidov, Apr 03 2011

Keywords

Comments

a(1) = 69 = A116945(5).
Numbers n that generate three primes under the first three iterations of the map n-> A002731(n).
Subsequence of A116945.

Crossrefs

Programs

  • Magma
    r:=func< k | (k^2+1) div 2 >; [ n: n in [1..145000 by 2] | IsPrime(r(n)) and IsPrime(r(r(n))) and IsPrime(r(r(r(n)))) ];  // Bruno Berselli, Apr 05 2011
    
  • Mathematica
    s={}; Do[If[PrimeQ[m=(n^2+1)/2] && PrimeQ[p=(m^2+1)/2] && PrimeQ[q=(p^2+1)/2], Print[n]; AppendTo[s,n]], {n,1,300000,2}]; s
    mpqQ[n_]:=Module[{m=(n^2+1)/2,p},p=(m^2+1)/2;AllTrue[{m,p,(p^2+1)/2},PrimeQ]]; Select[Range[144700],mpqQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 18 2021 *)
  • PARI
    v=vector(10^4);i=0;forstep(n=1,9e9,2,if(isprime(m=(n^2+1)/2)&isprime(p=(m^2+1)/2)&isprime(q=(p^2+1)/2),v[i++]=n;if(i==#v,return(v)))) \\ Charles R Greathouse IV, Apr 05 2011