A188551 Numbers located at angle turns in a pentagonal spiral.
1, 2, 3, 4, 5, 7, 9, 11, 12, 14, 17, 20, 23, 24, 27, 31, 35, 39, 40, 44, 49, 54, 59, 60, 65, 71, 77, 83, 84, 90, 97, 104, 111, 112, 119, 127, 135, 143, 144, 152, 161, 170, 179, 180, 189, 199, 209, 219, 220, 230, 241, 252, 263, 264, 275, 287, 299, 311, 312, 324, 337, 350, 363, 364, 377, 391, 405, 419, 420, 434, 449, 464, 479, 480
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..5000
- Michel Lagneau, Illustration of the numbers in the pentagonal spiral
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,2,-2,0,0,0,-1,1).
Programs
-
Magma
I:=[1,2,3,4,5,7,9,11,12,14,17]; [n le 11 select I[n] else Self(n-1)+2*Self(n-5)-2*Self(n-6)-Self(n-10)+Self(n-11): n in [1..90]]; // Vincenzo Librandi, Aug 18 2018
-
Maple
with(numtheory): T:=array(1..300): k:=1: for n from 1 to 50 do: x1:= 2*n^2 -1: T[k]:=x1: x2:= (n+1)*(2*n-1): T[k+1]:=x2: x3:=2*n^2+2*n-1: T[k+2]:=x3: x4:= 2*n*(n+1): T[k+3]:=x4: x5:=n*(2*n+3): T[k+4]:=x5: k:=k+5: od: for p from 1 to 250 do: z:= T[p]: printf(`%d, `, z): od:
-
Mathematica
CoefficientList[Series[(1 + x) (1 + x^2) (x^2 - x + 1) (x^3 - x - 1) / ((x^4 + x^3 + x^2 + x + 1)^2 (x - 1)^3), {x, 0, 80}], x] (* Vincenzo Librandi, Aug 18 2018 *) LinearRecurrence[{1,0,0,0,2,-2,0,0,0,-1,1},{1,2,3,4,5,7,9,11,12,14,17},80] (* Harvey P. Dale, Jun 17 2021 *)
Formula
From R. J. Mathar, Apr 12 2011: (Start)
a(n) = a(n-1) + 2*a(n-5) - 2*a(n-6) - a(n-10) + a(n-11).
G.f.: x*(1+x)*(1+x^2)*(x^2-x+1)*(x^3-x-1) / ((x^4+x^3+x^2+x+1)^2*(x-1)^3 ). (End)
Comments