A188554 Number of 3 X n binary arrays without the pattern 0 1 diagonally, vertically, antidiagonally or horizontally.
1, 4, 7, 12, 20, 32, 49, 72, 102, 140, 187, 244, 312, 392, 485, 592, 714, 852, 1007, 1180, 1372, 1584, 1817, 2072, 2350, 2652, 2979, 3332, 3712, 4120, 4557, 5024, 5522, 6052, 6615, 7212, 7844, 8512, 9217, 9960, 10742, 11564, 12427, 13332, 14280, 15272, 16309
Offset: 0
Examples
Some solutions for 3 X 3: 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 For n=3, the a(3)=12 solutions are 000, 100, 110, 210, 111, 211, 221, 321, 222, 322, 332, 333. Those corresponding to the above arrays are 110, 221, 322, 222, 332, 000, 333 (as mentioned, consider the sums of the columns of each array). - _Miquel A. Fiol_, Feb 06 2024
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000 (terms n = 1..200 from R. H. Hardin)
Crossrefs
Row 3 of A188553.
Formula
Proved (for the number of sequences): a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (From this, the formulas below follow.) - Miquel A. Fiol, Feb 06 2024
a(n) = (1/6)*n^3 + (11/6)*n + 2 for n>=1.
G.f.: -(x^4 - 4*x^3 + 3*x^2 - 1)/(x - 1)^4. - Colin Barker, Mar 18 2012
Extensions
a(0)=1 prepended by Alois P. Heinz, Feb 10 2024
Comments