A188595 Decimal expansion of Brocard angle of side-golden right triangle.
4, 2, 0, 5, 3, 4, 3, 3, 5, 2, 8, 3, 9, 6, 5, 1, 2, 7, 8, 8, 8, 2, 6, 2, 5, 1, 5, 9, 1, 3, 2, 1, 5, 3, 7, 3, 3, 5, 1, 0, 3, 9, 3, 9, 2, 8, 1, 9, 9, 1, 9, 6, 0, 9, 8, 8, 9, 2, 6, 1, 4, 0, 2, 3, 4, 6, 0, 4, 4, 6, 5, 1, 7, 3, 8, 1, 6, 8, 6, 8, 0, 2, 5, 9, 2, 6, 7, 0, 0, 2, 4, 2, 5, 7, 9, 2, 5, 1, 6, 8, 9, 1, 4, 8, 9, 3, 4, 2, 6, 1, 8, 0, 1, 5, 2, 5, 8, 0, 2, 5, 2, 1, 1, 7, 7, 8, 2, 0, 6, 8
Offset: 0
Examples
Brocard angle: 0.420534335283965127888262515913215373 approx.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- John H. Conway, Charles Radin, and Lorenzo Sadun, On Angles Whose Squared Trigonometric Functions are Rational, arXiv:math-ph/9812019, 1998. See also Discr. Computat. Geom. (1999) Vol. 22, 321-332.
- Eric Weisstein's World of Mathematics, Dehn Invariant.
- Index entries for transcendental numbers.
Programs
-
Magma
[Arctan(Sqrt(1/5))]; // G. C. Greubel, Nov 21 2017
-
Mathematica
r=(1+5^(1/2))/2; b=1; a=r*b; c=(a^2+b^2)^(1/2); area=(1/4)((a+b+c)(b+c-a)(c+a-b)(a+b-c))^(1/2); brocard = ArcCot[(a^2+b^2+c^2)/(4 area)]; RealDigits[N[brocard,130]][[1]] RealDigits[ArcTan[Sqrt[1/5]], 10, 50][[1]] (* G. C. Greubel, Nov 21 2017 *)
-
PARI
atan(sqrt(1/5)) \\ G. C. Greubel, Nov 21 2017
Formula
Brocard angle: arccot((a^2+b^2+c^2)/(4*area(ABC))) = arccot(sqrt(5)).
Equals A228496/2. - Hugo Pfoertner, Nov 06 2024
Comments