Original entry on oeis.org
1, 1, 3, 7, 19, 56, 180, 596, 2015, 6904, 23923, 83755, 296084, 1056095, 3797790, 13757665, 50164787, 183980036, 678215028, 2511483176, 9337575130, 34840575458, 130412367572, 489546890178, 1842438724560, 6950471604901, 26276784902865, 99539079724648, 377759500611913, 1436093975018569, 5468247624237042, 20853026397347178
Offset: 1
A156043
A(n,n), where A(n,k) is the number of compositions (ordered partitions) of n into k parts (parts of size 0 being allowed), with the first part being greater than or equal to all the rest.
Original entry on oeis.org
1, 2, 4, 11, 32, 102, 331, 1101, 3724, 12782, 44444, 156334, 555531, 1991784, 7197369, 26186491, 95847772, 352670170, 1303661995, 4838822931, 18025920971, 67371021603, 252538273442, 949164364575, 3576145084531, 13503991775252
Offset: 1
a(4) = 11: the 11 compositions of this type of 4 into 4 parts being
(4,0,0,0); (3,1,0,0); (3,0,1,0); (3,0,0,1);
(2,2,0,0); (2,0,2,0); (2,0,0,2); (2,1,1,0);
(2,1,0,1); (2,0,1,1); (1,1,1,1)
-
b:= proc(n,i,m) option remember; if n<0 then 0 elif n=0 then 1 elif i=1 then `if`(n<=m, 1, 0) else add(b(n-k, i-1, m), k=0..m) fi end: A:= (n,k)-> add(b(n-m, k-1, m), m=ceil(n/k)..n): seq(A(n,n), n=1..30); # Alois P. Heinz, Jun 14 2009
-
b[n_, i_, m_] := b[n, i, m] = Which[n<0, 0, n==0, 1, i==1, If[n <= m, 1, 0], True, Sum[b[n-k, i-1, m], {k, 0, m}]]; A[n_, k_] := Sum[b[n-m, k-1, m], {m, Ceiling[n/k], n}]; Table[A[n, n], {n, 1, 30}] (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *)
-
N=120;v=vector(N,i,0);for(d=1,N,A=matrix(N,N,i,j,0);A[1,1]=1; for(i=1,N-1,for(j=0,N-1,s=0;for(k=0,min(j,d), s+=A[i,j-k+1]);A[i+1,j+1]=s)); for(i=d,N,v[i]+=A[i,i-d+1]));for(i=1,N,print1(v[i]", ")) \\ Robert Gerbicz, Apr 06 2011
Showing 1-2 of 2 results.
Comments