cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A156043 A(n,n), where A(n,k) is the number of compositions (ordered partitions) of n into k parts (parts of size 0 being allowed), with the first part being greater than or equal to all the rest.

Original entry on oeis.org

1, 2, 4, 11, 32, 102, 331, 1101, 3724, 12782, 44444, 156334, 555531, 1991784, 7197369, 26186491, 95847772, 352670170, 1303661995, 4838822931, 18025920971, 67371021603, 252538273442, 949164364575, 3576145084531, 13503991775252
Offset: 1

Views

Author

Jack W Grahl, Feb 02 2009

Keywords

Comments

The value is smaller than the number of compositions of n into k parts and at least the number of (unordered) partitions.
It is also at least the number of compositions of n into n parts divided by n. From these bounds: C(2*n-1,n-1)/n <= a(n) <= C(2*n-1,n-1). - Robert Gerbicz, Apr 06 2011
a(n) is also the number of Dyck paths of semilength 2n such that each level has exactly n peaks or no peaks. a(3) = 4: //\\//\\//\\, ///\\//\/\\\, ///\/\\//\\\, ////\/\/\\\\. - Alois P. Heinz, Jun 04 2017

Examples

			a(4) = 11: the 11 compositions of this type of 4 into 4 parts being
(4,0,0,0); (3,1,0,0); (3,0,1,0); (3,0,0,1);
(2,2,0,0); (2,0,2,0); (2,0,0,2); (2,1,1,0);
(2,1,0,1); (2,0,1,1); (1,1,1,1)
		

Crossrefs

A156041 gives the full array A(n, k). See also A156039, A156040 and A156042.
One of two bisections of A188624 (see also A188625).

Programs

  • Maple
    b:= proc(n,i,m) option remember; if n<0 then 0 elif n=0 then 1 elif i=1 then `if`(n<=m, 1, 0) else add(b(n-k, i-1, m), k=0..m) fi end: A:= (n,k)-> add(b(n-m, k-1, m), m=ceil(n/k)..n): seq(A(n,n), n=1..30); # Alois P. Heinz, Jun 14 2009
  • Mathematica
    b[n_, i_, m_] := b[n, i, m] = Which[n<0, 0, n==0, 1, i==1, If[n <= m, 1, 0], True, Sum[b[n-k, i-1, m], {k, 0, m}]]; A[n_, k_] := Sum[b[n-m, k-1, m], {m, Ceiling[n/k], n}]; Table[A[n, n], {n, 1, 30}] (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *)
  • PARI
    N=120;v=vector(N,i,0);for(d=1,N,A=matrix(N,N,i,j,0);A[1,1]=1; for(i=1,N-1,for(j=0,N-1,s=0;for(k=0,min(j,d), s+=A[i,j-k+1]);A[i+1,j+1]=s)); for(i=d,N,v[i]+=A[i,i-d+1]));for(i=1,N,print1(v[i]", ")) \\ Robert Gerbicz, Apr 06 2011

Extensions

More terms from Alois P. Heinz, Jun 14 2009
Edited by N. J. A. Sloane, Apr 06 2011

A188624 a(n) = greatest entry in row n of A184957.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 7, 11, 19, 32, 56, 102, 180, 331, 596, 1101, 2015, 3724, 6904, 12782, 23923, 44444, 83755, 156334, 296084, 555531, 1056095, 1991784, 3797790, 7197369, 13757665, 26186491, 50164787, 95847772, 183980036, 352670170, 678215028, 1303661995, 2511483176, 4838822931, 9337575130, 18025920971, 34840575458, 67371021603, 130412367572
Offset: 1

Views

Author

N. J. A. Sloane, Apr 06 2011

Keywords

Comments

The greatest entry occurs at the midpoint of the row.
This also gives the greatest entries in the rows of A186807 and A156041.

Crossrefs

Bisections give A156043, A188625.

Formula

I would like to know the asymptotics for this sequence.
Showing 1-2 of 2 results.