A188667 Ordered (2,2)-selections from the multiset {1,1,2,2,3,3,...,n,n}.
0, 0, 3, 21, 72, 180, 375, 693, 1176, 1872, 2835, 4125, 5808, 7956, 10647, 13965, 18000, 22848, 28611, 35397, 43320, 52500, 63063, 75141, 88872, 104400, 121875, 141453, 163296, 187572, 214455, 244125, 276768, 312576, 351747, 394485, 441000
Offset: 0
Examples
Example: For n=3 there are 21 ordered selections of the type (2,2): [[1,1],[2,2]], [[1,2],[1,2]], [[2,2],[1,1]], [[1,2],[2,3]], [[1,3],[2,2]], [[2,2],[1,3]], [[2,3],[1,2]], [[1,1],[2,3]], [[1,2],[1,3]], [[1,3],[1,2]], [[2,3],[1,1]], [[1,1],[3,3]], [[1,3],[1,3]], [[3,3],[1,1]], [[1,2],[3,3]], [[1,3],[2,3]], [[2,3],[1,3]], [[3,3],[1,2]], [[2,2],[3,3]], [[2,3],[2,3]], [[3,3],[2,2]].
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Quang T. Bach, Roshil Paudyal, Jeffrey B. Remmel, A Fibonacci analogue of Stirling numbers, arXiv:1510.04310 [math.CO], 2015 (see p. 28).
- T. Wieder, Generation of all possible multiselections from a multiset, Progress in Applied Mathematics, 2(1) (2011), 61-66, DOI:10.3968/j.pam.1925252820110201.010. - Thomas Wieder, Oct 15 2011
Crossrefs
Cf. A014209.
Programs
-
Mathematica
Table[n*(n + 4)*(n - 1)^2/4, {n, 0, 100}] (* Vincenzo Librandi, Oct 18 2012 *)
Formula
a(n) = n*(n+4)*(n-1)^2/4.
G.f.: 3*x^2*(x^2-2*x-1) / (x-1)^5.
Comments