A188726 Continued fraction of the shape of a (2*Pi)-extension rectangle; shape = Pi + sqrt(1 + Pi^2).
6, 2, 3, 1, 1, 3, 2, 1, 16, 47, 1, 4, 2, 7, 1, 5, 317, 4, 1, 1, 1, 2, 13, 1, 38, 37, 1, 4, 1, 13, 1, 59, 3, 17, 1, 2, 2, 2, 5, 1, 3, 1, 3, 9, 1, 3, 4, 1, 2, 2, 1, 1, 2, 1, 23, 8, 9, 84, 1, 3, 1, 2, 1, 1, 3, 5, 5, 1, 1, 16, 1, 8, 4, 11, 1, 3, 1, 16, 4, 1, 1, 1, 1, 18, 1, 12, 1, 21, 3, 3, 1, 2, 4, 2, 10, 3, 5, 6, 1, 1, 25, 4, 10, 1, 5, 2, 1, 4, 16, 2, 5, 4, 2, 1, 4, 1, 1, 2, 1, 1
Offset: 0
Examples
6.4385009630654083972232325635946917292621665408132...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..9999
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); ContinuedFraction(Pi(R) + Sqrt(1 + Pi(R)^2)); // G. C. Greubel, Oct 31 2018
-
Maple
with(numtheory): cfrac(Pi+sqrt(1+Pi^2),120,'quotients'); # Muniru A Asiru, Nov 22 2018
-
Mathematica
r = 2*Pi; t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t] N[t, 130] RealDigits[N[t, 130]][[1]] (* A188725 *) ContinuedFraction[t, 120] (* A188726 *) ContinuedFraction[Pi + Sqrt[1 + Pi^2], 100] (* G. C. Greubel, Oct 31 2018 *)
-
PARI
default(realprecision, 100); contfrac(Pi + sqrt(1 + Pi^2)) \\ G. C. Greubel, Oct 31 2018
Comments