A188640 Decimal expansion of e + sqrt(1+e^2).
5, 6, 1, 4, 6, 6, 8, 5, 6, 0, 0, 4, 9, 0, 5, 3, 4, 3, 9, 2, 5, 4, 7, 8, 2, 8, 3, 3, 1, 8, 6, 3, 3, 7, 3, 6, 0, 2, 3, 9, 8, 2, 0, 5, 6, 4, 1, 7, 1, 1, 3, 3, 9, 9, 6, 3, 2, 0, 4, 7, 8, 1, 4, 6, 4, 7, 2, 9, 3, 9, 2, 5, 6, 4, 2, 3, 9, 0, 0, 2, 6, 5, 0, 9, 8, 0, 4, 8, 4, 2, 8, 5, 5, 3, 4, 1, 5, 3, 5, 1, 3, 3, 7, 3, 7, 6, 0, 7, 6, 8, 8, 0, 8, 7, 8, 3, 3, 6, 0, 7, 7, 0, 0, 4, 0, 1, 8, 2, 9, 9
Offset: 1
A188882 Decimal expansion of (5+sqrt(34))/3.
3, 6, 1, 0, 3, 1, 7, 2, 9, 8, 2, 8, 1, 7, 6, 6, 8, 2, 3, 6, 2, 4, 7, 1, 7, 6, 2, 5, 8, 4, 8, 5, 2, 7, 6, 9, 2, 1, 7, 3, 7, 9, 9, 4, 4, 4, 9, 6, 1, 9, 9, 0, 6, 5, 1, 4, 8, 3, 3, 3, 5, 5, 8, 1, 6, 2, 2, 6, 0, 3, 3, 5, 3, 9, 9, 8, 9, 0, 4, 2, 0, 9, 2, 2, 1, 7, 4, 6, 7, 7, 5, 4, 8, 4, 3, 4, 5, 1, 3, 2, 8, 5, 2, 2, 6, 3, 2, 0, 7, 3, 5, 8, 4, 5, 1, 6, 3, 7, 1, 1, 7, 2, 7, 1, 2, 9, 1, 2, 0, 5
Offset: 1
Comments
Decimal expansion of the length/width ratio of a (10/3)-extension rectangle. See A188640 for definitions of shape and r-extension rectangle.
A (10/3)-extension rectangle matches the continued fraction [3,1,1,1,1,3,3,1,1,1,1,3,3,1,1,1,1,3,3,...] for the shape L/W=(5+sqrt(34))/3. This is analogous to the matching of a golden rectangle to the continued fraction [1,1,1,1,1,1,1,1,...]. Specifically, for the (10/3)-extension rectangle, 3 squares are removed first, then 1 square, then 1 square, then 1 square,..., so that the original rectangle of shape (5+sqrt(34))/3 is partitioned into an infinite collection of squares.
Examples
3.61031729828176682362471762584852769217379944...
Programs
-
Mathematica
r = 10/3; t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t] N[t, 130] RealDigits[N[t, 130]][[1]] ContinuedFraction[t, 120] RealDigits[(5+Sqrt[34])/3,10,140][[1]] (* Harvey P. Dale, Feb 18 2015 *)
-
PARI
(sqrt(34)+5)/3 \\ Charles R Greathouse IV, Apr 25 2016
Comments
Examples
Links
Crossrefs
Programs
Magma
Maple
Mathematica
PARI
Formula