A188814 Sum of the "complements" of the integer partitions of n.
0, 0, 0, 1, 4, 12, 27, 57, 107, 192, 327, 538, 855, 1329, 2018, 3003, 4402, 6349, 9045, 12720, 17713, 24395, 33335, 45118, 60655, 80888, 107242, 141177, 184905, 240679, 311850, 401860, 515725, 658630, 838006, 1061561, 1340193, 1685271, 2112576, 2638727
Offset: 0
Keywords
Examples
a(4) = 4 because the partitions 4, 2+2, 1+1+1+1 have no empty spaces while the partitions 3+1 and 2+1+1 each have two.
References
- Sriram Pemmaraju and Steven Skiena, Computational Discrete Mathematics, Cambridge, 2003, page 145.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, i) option remember; local f, g; if n=0 or i=1 then [1, n] elif i<1 then [0, 0] else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i)); [f[1]+g[1], f[2]+g[2]+g[1]] fi end: a:= n-> add(add(i, i=b(n-j, min(j, n-j)))*j, j=1..n) -n*b(n, n)[1]: seq(a(n), n=0..40); # Alois P. Heinz, Apr 22 2011, Apr 11 2012
-
Mathematica
f[list_]:= Total[Select[Reverse[Table[Max[list]-list[[i]],{i,1,Length[list]}]],#>0&]]; Table[Total[Map[f, IntegerPartitions[n]]],{n,0,30}] (* second program: *) b[n_, i_] := b[n, i] = Module[{f, g}, If [n==0 || i==1, {1, n}, If[i<1, {0, 0}, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, i]]]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + g[[1]]}]]; a[n_] := Sum[Sum[i, {i, b[n-j, Min[j, n-j]]}]*j, {j, 1, n}]-n*b[n,n][[1]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Aug 30 2016, after Alois P. Heinz *)
Formula
a(n) = Sum_{k>0} k*A268192(n,k). - Alois P. Heinz, Feb 12 2016
Comments