cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188818 Number of n X n binary arrays without the pattern 0 1 diagonally or antidiagonally.

Original entry on oeis.org

1, 2, 9, 48, 256, 1360, 7056, 36000, 179776, 884256, 4276624, 20432608, 96353856, 449990080, 2080089664, 9540782208, 43403888896, 196212020800, 881112632976, 3936117388896, 17487049789504, 77350773736512, 340574032803904, 1493986588951168, 6528047911024896
Offset: 0

Views

Author

R. H. Hardin, Apr 11 2011

Keywords

Examples

			Some solutions for 3X3:
  0  1  0    1  1  1    1  1  1    1  0  1    1  0  1    1  0  1    1  1  0
  1  0  0    1  1  0    0  1  0    0  1  0    0  1  0    0  1  0    1  0  1
  0  0  0    1  0  1    0  0  0    1  0  1    0  0  0    1  0  0    0  0  0
		

Crossrefs

Diagonal of A188824.

Programs

  • Mathematica
    Prepend[Table[(2^(n - 2) + 2*Sum[Binomial[n - 1, n - k - l] - Binomial[n - 1, n + k - l + 1], {k, 0, Floor[(n + 1)/2]}, {l, k + 1, Floor[(n + 1)/2]}]) * (2^(n - 2) + 2*Sum[Binomial[n - 1, n - k - l - 1] - Binomial[n - 1, n + k - l + 1], {k, 0, Floor[n/2]}, {l, k + 1, Floor[n/2]}]), {n, 2, 100}], 2] (* Manuel Kauers and Christoph Koutschan, Mar 02 2023 *)

Formula

From Manuel Kauers and Christoph Koutschan, Mar 02 2023: (Start)
a(n) = (2^(n-2) + 2*Sum_{k=0..floor((n+1)/2)} Sum_{l=k+1..floor((n+1)/2)} binomial(n-1, n-k-l) - binomial(n-1, n+k-l+1)) * (2^(n-2) + 2*Sum_{k=0..floor(n/2)} Sum_{l=k+1..floor(n/2)} binomial(n-1, n-k-l-1) - binomial(n-1, n+k-l+1)) for n>1.
Recurrence: (n-2)*(n+3)^2*(n+4)*(2*n^6 - 3*n^5 - 22*n^4 - 17*n^3 - 16*n^2 - 61*n - 33)*a(n+5) - 4*(n+3)*(2*n^9 + 15*n^8 - 24*n^7 - 278*n^6 - 279*n^5 + 622*n^4 + 1327*n^3 + 1792*n^2 + 2619*n + 1314)*a(n+4) - 16*(n+2)*(4*n^9 + 8*n^8 - 91*n^7 - 251*n^6 + 183*n^5 + 509*n^4 - 1161*n^3 - 1955*n^2 - 399*n - 207)*a(n+3) + 64*(4*n^10 + 32*n^9 + 17*n^8 - 455*n^7 - 1362*n^6 - 754*n^5 + 2250*n^4 + 4669*n^3 + 5364*n^2 + 4509*n + 1566)*a(n+2) + 256*(n+1)*(2*n^9 + n^8 - 52*n^7 - 121*n^6 + 79*n^5 + 255*n^4 - 476*n^3 - 1533*n^2 - 1665*n - 810)*a(n+1) - 1024*(n-1)*n*(n+1)^2*(2*n^6 + 9*n^5 - 7*n^4 - 95*n^3 - 199*n^2 - 235*n - 150)*a(n) = 0. (End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Mar 02 2023