A188881 Triangle of coefficients arising from an expansion of Integral( exp(exp(exp(x))), dx).
1, 1, 1, 2, 3, 2, 6, 11, 12, 6, 24, 50, 70, 60, 24, 120, 274, 450, 510, 360, 120, 720, 1764, 3248, 4410, 4200, 2520, 720, 5040, 13068, 26264, 40614, 47040, 38640, 20160, 5040, 40320, 109584, 236248, 403704, 538776, 544320, 393120, 181440, 40320
Offset: 1
Examples
Triangle begins: 1 1 1 2 3 2 6 11 12 6 24 50 70 60 24 120 274 450 510 360 120 ...
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..2500
- G. A. Edgar, Transseries for beginners, arXiv:0801.4877 [math.RA], 2008-2009.
- F. Qi, On multivariate logarithmic polynomials and their properties, Indagationes Mathematicae (2018).
- Wikipedia, Stirling numbers of the first kind
Programs
-
Maple
S:=proc(n,k)global s:if(n=0 and k=0)then s[0,0]:=1:elif(n=0 or k=0)then s[n,k]:=0:elif(not type(s[n,k],integer))then s[n,k]:=(n-1)*S(n-1,k)+S(n-1,k-1):fi:return s[n,k]:end: T:=proc(n,k)return (k-1)!*S(n,k);end: for n from 1 to 6 do for k from 1 to n do print(T(n,k)):od:od: # Nathaniel Johnston, Apr 15 2011 # With offset n = 0, k = 0: A188881 := (n, k) -> k!*abs(Stirling1(n+1, k+1)): seq(seq(A188881(n,k), k=0..n), n=0..8); # Peter Luschny, Oct 19 2017 # Alternative: gf := -log(1 + x*log(1 - t)): ser := series(gf, t, 18): toeff := n -> n!*expand(coeff(ser, t, n)): seq(print(seq(coeff(toeff(n), x, k), k=1..n)), n=1..8); # Peter Luschny, Jul 10 2020
-
Mathematica
Table[(k - 1)! * Sum[StirlingS2[i, k] * (-1)^(n - i) * StirlingS1[n, i], {i, 0, k}], {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Apr 17 2015 *)
-
Maxima
T(n,k):=(k-1)!*sum(stirling2(i,k)*(-1)^(n-i)*stirling1(n,i),i,0,k); /* Vladimir Kruchinin, Apr 17 2015 */
-
PARI
{T(n, k) = if( k<1 || k>n, 0, (n-1)! * polcoeff( (x / (1 - exp(-x * (1 + x * O(x^n)))))^n, n-k))}; /* Michael Somos, May 10 2017 */
-
PARI
{T(n, k) = if( k<1 || n<0, 0, (k-1)! * sum(i=0, k, stirling(i, k, 2) * (-1)^(n-i) * stirling(n, i, 1)))}; /* Michael Somos, May 10 2017 */
Formula
T(n, k) = (k-1)!*Sum_{i=0..k}(Stirling2(i,k)*(-1)^(n-i)*Stirling1(n,i)) =
T(n, k) = Sum_{i=0..k}(W(i,k)*(-1)^(n-i)*Stirling1(n,i)), where W(n,k) is the Worpitzky triangle A028246. - Vladimir Kruchinin, Apr 17 2015.
T(n,k) = [x^k] n!*[t^n](-log(1 + x*log(1 - t))). - Peter Luschny, Jul 10 2020
T(n,k) = Sum_{m=0..n-k} abs(Stirling1(n-1,m+k-1))*(k+m-1)!/m!. - Vladimir Kruchinin, Jul 14 2025
Extensions
a(11)-a(45) from Nathaniel Johnston, Apr 15 2011
Comments