cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189006 Array A(m,n) read by antidiagonals: number of domino tilings of the m X n grid with upper left corner removed iff m*n is odd, (m>=0, n>=0).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 5, 4, 5, 1, 1, 1, 1, 8, 11, 11, 8, 1, 1, 1, 1, 13, 15, 36, 15, 13, 1, 1, 1, 1, 21, 41, 95, 95, 41, 21, 1, 1, 1, 1, 34, 56, 281, 192, 281, 56, 34, 1, 1, 1, 1, 55, 153, 781, 1183, 1183, 781, 153, 55, 1, 1, 1, 1, 89, 209, 2245, 2415, 6728, 2415, 2245, 209, 89, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 15 2011

Keywords

Examples

			A(3,3) = 4, because there are 4 domino tilings of the 3 X 3 grid with upper left corner removed:
  . .___. . .___. . .___. . .___.
  ._|___| ._|___| ._| | | ._|___|
  | |___| | | | | | |_|_| |___| |
  |_|___| |_|_|_| |_|___| |___|_|
Array begins:
  1, 1,  1,  1,   1,    1,    1, ...
  1, 1,  1,  1,   1,    1,    1, ...
  1, 1,  2,  3,   5,    8,   13, ...
  1, 1,  3,  4,  11,   15,   41, ...
  1, 1,  5, 11,  36,   95,  281, ...
  1, 1,  8, 15,  95,  192, 1183, ...
  1, 1, 13, 41, 281, 1183, 6728, ...
		

Crossrefs

Rows m=0+1, 2-12 give: A000012, A000045(n+1), A002530(n+1), A005178(n+1), A189003, A028468, A189004, A028470, A189005, A028472, A210724, A028474.
Main diagonal gives: A189002.

Programs

  • Maple
    with(LinearAlgebra):
    A:= proc(m, n) option remember; local i, j, s, t, M;
          if m=0 or n=0 then 1
        elif m1 or j>1 or s=0 then
                   if j
    				
  • Mathematica
    A[1, 1] = 1; A[m_, n_] := A[m, n] = Module[{i, j, s, t, M}, Which[m == 0 || n == 0, 1, m < n, A[n, m], True, s = Mod[n*m, 2];M[i_, j_] /; j < i := -M[j, i]; M[, ] = 0; For[i = 1, i <= n, i++, For[j = 1, j <= m, j++, t = (i-1)*m+j-s; If[i > 1 || j > 1 || s == 0, If[j < m, M[t, t+1] = 1]; If[i < n, M[t, t+m] = 1-2*Mod[j, 2]]]]]; Sqrt[Det[Array[M, {n*m-s, n*m-s}]]]]]; Table[Table[A[m, d-m], {m, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Dec 26 2013, translated from Maple *)