cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189025 Number of primes in the range (n - 2*sqrt(n), n].

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 3, 2, 2, 3, 2, 3, 3, 2, 2, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 2, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 4, 3, 4, 4, 3, 3, 4, 4, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 5, 4, 4, 4, 3, 3, 3, 3, 4, 4, 3, 3, 4, 4, 5, 4, 4, 4, 5, 5, 6, 5, 5, 5, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 3, 4
Offset: 1

Views

Author

T. D. Noe, Apr 15 2011

Keywords

Comments

Note that the lower bound, n-2*sqrt(n), is excluded from the count and the upper range, n, is included. The only zero term appears to be a(1). See A189027 for special primes associated with this sequence. This sequence is related to Legendre's conjecture that there is a prime between consecutive squares.

Crossrefs

Programs

  • Mathematica
    cnt = 0; lastLower = -3; Table[lower = Floor[n - 2*Sqrt[n]]; If[lastLower < lower && PrimeQ[lower], cnt--]; lastLower = lower; If[PrimeQ[n], cnt++]; cnt, {n, 100}]
    Table[PrimePi[n]-PrimePi[n-2Sqrt[n]],{n,130}] (* Harvey P. Dale, Feb 28 2023 *)
  • PARI
    a(n)=if(nCharles R Greathouse IV, May 11 2011