cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A023055 (Apparently) differences between adjacent perfect powers (integers of form a^b, a >= 1, b >= 2).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 30, 32, 33, 35, 36, 37, 38, 39, 40, 41, 43, 45, 47, 48, 49, 51, 53, 55, 56, 57, 59, 60, 61, 63, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 83, 85, 87, 89, 92, 93, 94, 95, 97, 99, 100
Offset: 1

Views

Author

Keywords

Comments

Catalan's conjecture (now a theorem) is that 1 occurs just once as a difference, between 8 and 9.

Crossrefs

Cf. A189117 (conjectured number of pairs of consecutive perfect powers differing by n).

A023056 a(n) is least k such that k and k+n are adjacent nontrivial powers of positive integers, or 0 if no such k apparently exists.

Original entry on oeis.org

8, 25, 1, 4, 27, 0, 9, 97336, 16, 2187, 3125, 2197, 36, 0, 49, 128, 64, 225, 81, 196, 100, 0, 2025, 1000, 144, 42849, 169, 484, 0, 6859, 0, 7744, 256, 0, 289, 1728, 14348907, 1331, 361, 2704, 400, 0, 441, 0, 9216, 0, 529, 21904, 576, 0, 625, 0, 676, 0, 729, 5776, 784, 0
Offset: 1

Views

Author

Keywords

Comments

Searching up to 10^22, the largest term for n <= 1000 is a(618) = 421351^3 = 74805251419106551. - T. D. Noe, Apr 21 2011

Crossrefs

Cf. A189117 (conjectured number of pairs of consecutive perfect powers differing by n).
Cf. A103954. (the powerful (A001694) analogous sequence).

Programs

  • Mathematica
    nextPerfectPowers[n_] := Block[{k = n + 1}, While[GCD @@ Last /@ FactorInteger@ k == 1, k++ ]; k]; t = Table[0, {100}]; t[[3]] = 1; m = 0; While[m < 14400000, n = nextPerfectPowers@ m; d = n - m; If[d < 100 && t[[d]] == 0, t[[d]] = m; Print[{d, m}]]; m = n]; t (* Robert G. Wilson v, May 29 2009 *)
    (* checked against *) mx = 14400000; pp = Union[ Join[{1}, Flatten[ Table[n^i, {n, 2, Sqrt@mx}, {i, 2, Log[n, mx]}]]]]; d = Rest@ pp - Most@ pp; pp[[ # ]] & /@ Flatten[ Table[ Position[d, n, 1, 1], {n, 56}] /. {{} -> {0}}] /. {List -> 0} (* Robert G. Wilson v, May 29 2009 *)

A076427 Number of solutions to Pillai's equation a^x - b^y = n, with a>0, b>0, x>1, y>1.

Original entry on oeis.org

1, 1, 2, 3, 2, 0, 5, 3, 4, 1, 4, 2, 3, 0, 3, 3, 7, 3, 5, 2, 2, 2, 4, 5, 2, 3, 3, 7, 1, 1, 2, 4, 2, 0, 3, 2, 3, 1, 4, 4, 3, 0, 1, 3, 4, 1, 6, 4, 3, 0, 2, 1, 2, 2, 3, 4, 3, 0, 1, 4, 2, 0, 4, 4, 4, 0, 2, 5, 2, 0, 4, 4, 6, 2, 3, 3, 2, 0, 4, 4, 4, 0, 2, 2, 2, 0, 3, 3, 6, 0, 3, 4, 4, 2, 4, 5, 3, 2, 4, 10
Offset: 1

Views

Author

T. D. Noe, Oct 11 2002

Keywords

Comments

This is the classic Diophantine equation of S. S. Pillai, who conjectured that there are only a finite number of solutions for each n. A generalization of Catalan's conjecture that a^x-b^y=1 has only one solution. For n <=100, a total of 274 solutions were found for perfect powers less than 10^12. No additional solutions were found for perfect powers < 10^18.

Examples

			a(4)=3 because there are 3 solutions: 4 = 2^3 - 2^2 = 6^2 - 2^5 = 5^3 - 11^2.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, D9.
  • T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge University Press, 1986.

Crossrefs

A264752 First differences of A106543.

Original entry on oeis.org

4, 2, 2, 1, 3, 2, 1, 1, 2, 2, 2, 2, 3, 1, 1, 3, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1
Offset: 1

Views

Author

Gionata Neri, Jul 10 2016

Keywords

Comments

It is conjectured that, for n > 1, a(n) < 4.

Crossrefs

Showing 1-4 of 4 results.