cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A001597 Perfect powers: m^k where m > 0 and k >= 2.

Original entry on oeis.org

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, 169, 196, 216, 225, 243, 256, 289, 324, 343, 361, 400, 441, 484, 512, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1000, 1024, 1089, 1156, 1225, 1296, 1331, 1369, 1444, 1521, 1600, 1681, 1728, 1764
Offset: 1

Views

Author

Keywords

Comments

Might also be called the nontrivial powers. - N. J. A. Sloane, Mar 24 2018
See A175064 for number of ways to write a(n) as m^k (m >= 1, k >= 1). - Jaroslav Krizek, Jan 23 2010
a(1) = 1, for n >= 2: a(n) = numbers m such that sum of perfect divisors of x = m has no solution. Perfect divisor of n is divisor d such that d^k = n for some k >= 1. a(n) for n >= 2 is complement of A175082. - Jaroslav Krizek, Jan 24 2010
A075802(a(n)) = 1. - Reinhard Zumkeller, Jun 20 2011
Catalan's conjecture (now a theorem) is that 1 occurs just once as a difference, between 8 and 9.
For a proof of Catalan's conjecture, see the paper by Metsänkylä. - L. Edson Jeffery, Nov 29 2013
m^k is the largest number n such that (n^k-m)/(n-m) is an integer (for k > 1 and m > 1). - Derek Orr, May 22 2014
From Daniel Forgues, Jul 22 2014: (Start)
a(n) is asymptotic to n^2, since the density of cubes and higher powers among the squares and higher powers is 0. E.g.,
a(10^1) = 49 (49% of 10^2),
a(10^2) = 6400 (64% of 10^4),
a(10^3) = 804357 (80.4% of 10^6),
a(10^4) = 90706576 (90.7% of 10^8),
a(10^n) ~ 10^(2n) - o(10^(2n)). (End)
A proper subset of A001694. - Robert G. Wilson v, Aug 11 2014
a(10^n): 1, 49, 6400, 804357, 90706576, 9565035601, 979846576384, 99066667994176, 9956760243243489, ... . - Robert G. Wilson v, Aug 15 2014

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 66.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section D9.
  • René Schoof, Catalan's Conjecture, Springer-Verlag, 2008, p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A007916.
Subsequence of A072103; A072777 is a subsequence.
Union of A075109 and A075090.
There are four different sequences which may legitimately be called "prime powers": A000961 (p^k, k >= 0), A246655 (p^k, k >= 1), A246547 (p^k, k >= 2), A025475 (p^k, k=0 and k >= 2), and which are sometimes confused with the present sequence.
First differences give A053289.

Programs

  • Haskell
    import Data.Map (singleton, findMin, deleteMin, insert)
    a001597 n = a001597_list !! (n-1)
    (a001597_list, a025478_list, a025479_list) =
       unzip3 $ (1, 1, 2) : f 9 (3, 2) (singleton 4 (2, 2)) where
       f zz (bz, ez) m
        | xx < zz = (xx, bx, ex) :
                    f zz (bz, ez+1) (insert (bx*xx) (bx, ex+1) $ deleteMin m)
        | xx > zz = (zz, bz, 2) :
                    f (zz+2*bz+1) (bz+1, 2) (insert (bz*zz) (bz, 3) m)
        | otherwise = f (zz+2*bz+1) (bz+1, 2) m
        where (xx, (bx, ex)) = findMin m  --  bx ^ ex == xx
    -- Reinhard Zumkeller, Mar 28 2014, Oct 04 2012, Apr 13 2012
    
  • Magma
    [1] cat [n : n in [2..1000] | IsPower(n) ];
    
  • Maple
    isA001597 := proc(n)
        local e ;
        e := seq(op(2,p),p=ifactors(n)[2]) ;
        return ( igcd(e) >=2 or n =1 ) ;
    end proc:
    A001597 := proc(n)
        option remember;
        local a;
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if isA001597(a) then
                    return a ;
                end if;
             end do;
        end if;
    end proc:
    seq(A001597(n),n=1..70) ; # R. J. Mathar, Jun 07 2011
    N:= 10000: # to get all entries <= N
    sort({1,seq(seq(a^b, b = 2 .. floor(log[a](N))), a = 2 .. floor(sqrt(N)))}); # Robert FERREOL, Jul 18 2023
  • Mathematica
    min = 0; max = 10^4;  Union@ Flatten@ Table[ n^expo, {expo, Prime@ Range@ PrimePi@ Log2@ max}, {n, Floor[1 + min^(1/expo)], max^(1/expo)}] (* T. D. Noe, Apr 18 2011; slightly modified by Robert G. Wilson v, Aug 11 2014 *)
    perfectPowerQ[n_] := n == 1 || GCD @@ FactorInteger[n][[All, 2]] > 1; Select[Range@ 1765, perfectPowerQ] (* Ant King, Jun 29 2013; slightly modified by Robert G. Wilson v, Aug 11 2014 *)
    nextPerfectPower[n_] := If[n == 1, 4, Min@ Table[ (Floor[n^(1/k)] + 1)^k, {k, 2, 1 + Floor@ Log2@ n}]]; NestList[ nextPerfectPower, 1, 55] (* Robert G. Wilson v, Aug 11 2014 *)
    Join[{1},Select[Range[2000],GCD@@FactorInteger[#][[All,2]]>1&]] (* Harvey P. Dale, Apr 30 2018 *)
  • PARI
    {a(n) = local(m, c); if( n<2, n==1, c=1; m=1; while( cMichael Somos, Aug 05 2009 */
    
  • PARI
    is(n)=ispower(n) || n==1 \\ Charles R Greathouse IV, Sep 16 2015
    
  • PARI
    list(lim)=my(v=List(vector(sqrtint(lim\=1),n,n^2))); for(e=3,logint(lim,2), for(n=2,sqrtnint(lim,e), listput(v,n^e))); Set(v) \\ Charles R Greathouse IV, Dec 10 2019
    
  • Python
    from sympy import perfect_power
    def ok(n): return n==1 or perfect_power(n)
    print([m for m in range(1, 1765) if ok(m)]) # Michael S. Branicky, Jan 04 2021
    
  • Python
    import sympy
    class A001597() :
        def _init_(self) :
            self.a = [1]
        def at(self, n):
            if n <= len(self.a):
                return self.a[n-1]
            else:
                cand = self.at(n-1)+1
                while sympy.perfect_power(cand) == False:
                    cand += 1
                self.a.append(cand)
                return cand
    a001597 = A001597()
    for n in range(1,20):
        print(a001597.at(n)) # R. J. Mathar, Mar 28 2023
    
  • Python
    from sympy import mobius, integer_nthroot
    def A001597(n):
        def f(x): return int(n-2+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 13 2024
  • Sage
    def A001597_list(n) :
        return [k for k in (1..n) if k.is_perfect_power()]
    A001597_list(1764) # Peter Luschny, Feb 03 2012
    

Formula

Goldbach showed that Sum_{n >= 2} 1/(a(n)-1) = 1.
Formulas from postings to the Number Theory List by various authors, 2002:
Sum_{i >= 2} Sum_{j >= 2} 1/i^j = 1;
Sum_{k >= 2} 1/(a(k)+1) = Pi^2 / 3 - 5/2;
Sum_{k >= 2} 1/a(k) = Sum_{n >= 2} mu(n)(1- zeta(n)) approx = 0.87446436840494... See A072102.
For asymptotics see Newman.
For n > 1: gcd(exponents in prime factorization of a(n)) > 1, cf. A124010. - Reinhard Zumkeller, Apr 13 2012
a(n) ~ n^2. - Thomas Ordowski, Nov 04 2012
a(n) = n^2 - 2*n^(5/3) - 2*n^(7/5) + (13/3)*n^(4/3) - 2*n^(9/7) + 2*n^(6/5) - 2*n^(13/11) + o(n^(13/11)) (Jakimczuk, 2012). - Amiram Eldar, Jun 30 2023

Extensions

Minor corrections from N. J. A. Sloane, Jun 27 2010

A053289 First differences of consecutive perfect powers (A001597).

Original entry on oeis.org

3, 4, 1, 7, 9, 2, 5, 4, 13, 15, 17, 19, 21, 4, 3, 16, 25, 27, 20, 9, 18, 13, 33, 35, 19, 18, 39, 41, 43, 28, 17, 47, 49, 51, 53, 55, 57, 59, 61, 39, 24, 65, 67, 69, 71, 35, 38, 75, 77, 79, 81, 47, 36, 85, 87, 89, 23, 68, 71, 10, 12, 95, 97, 99, 101, 103, 40, 65, 107, 109, 100
Offset: 1

Views

Author

Labos Elemer, Mar 03 2000

Keywords

Comments

Michel Waldschmidt writes: Conjecture 1.3 (Pillai). Let k be a positive integer. The equation x^p - y^q = k where the unknowns x, y, p and q take integer values, all >= 2, has only finitely many solutions (x,y,p,q). This means that in the increasing sequence of perfect powers [A001597] the difference between two consecutive terms [the present sequence] tends to infinity. It is not even known whether for, say, k=2, Pillai's equation has only finitely many solutions. A related open question is whether the number 6 occurs as a difference between two perfect powers. See Sierpiński [1970], problem 238a, p. 116. - Jonathan Vos Post, Feb 18 2008
Are there are any adjacent equal terms? - Gus Wiseman, Oct 08 2024

Examples

			Consecutive perfect powers are A001597(14) = 121, A001597(13) = 100, so a(13) = 121 - 100 = 21.
		

References

  • Wacław Sierpiński, 250 problems in elementary number theory, Modern Analytic and Computational Methods in Science and Mathematics, No. 26, American Elsevier, Warsaw, 1970, pp. 21, 115-116.
  • S. S. Pillai, On the equation 2^x - 3^y = 2^X - 3^Y, Bull, Calcutta Math. Soc. 37 (1945) 15-20.

Crossrefs

For non-perfect-powers (A007916) we have A375706.
The union is A023055.
For prime-powers (A000961 or A246655) we have A057820.
Sorted positions of first appearances are A376268, complement A376519.
For second differences we have A376559.
Ascending and descending points are A376560 and A376561.
A001597 lists perfect-powers.
A112344 counts integer partitions into perfect-powers, factorizations A294068.
A333254 gives run-lengths of differences between consecutive primes.

Programs

  • Mathematica
    Differences@ Select[Range@ 3200, # == 1 || GCD @@ FactorInteger[#][[All, 2]] > 1 &] (* Michael De Vlieger, Jun 30 2016, after Ant King at A001597 *)
  • Python
    from sympy import mobius, integer_nthroot
    def A053289(n):
        if n==1: return 3
        def f(x): return int(n-2+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax)+1 >= kmax:
            kmax <<= 1
        rmin, rmax = 1, kmax
        while True:
            kmid = kmax+kmin>>1
            if f(kmid)+1 < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        while True:
            rmid = rmax+rmin>>1
            if f(rmid) < rmid:
                rmax = rmid
            else:
                rmin = rmid
            if rmax-rmin <= 1:
                break
        return kmax-rmax # Chai Wah Wu, Aug 13 2024

Formula

a(n) = A001597(n+1) - A001597(n). - Jonathan Vos Post, Feb 18 2008
From Amiram Eldar, Jun 30 2023: (Start)
Formulas from Jakimczuk (2016):
Lim sup_{n->oo} a(n)/(2*n) = 1.
Lim inf_{n->oo} a(n)/(2*n)^(2/3 + eps) = 0. (End)
Can be obtained by inserting 0 between 3 and 6 in A375702 and then adding 1 to all terms. In particular, for n > 2, a(n+1) - 1 = A375702(n). - Gus Wiseman, Sep 14 2024

A377468 Least perfect-power >= n.

Original entry on oeis.org

1, 4, 4, 4, 8, 8, 8, 8, 9, 16, 16, 16, 16, 16, 16, 16, 25, 25, 25, 25, 25, 25, 25, 25, 25, 27, 27, 32, 32, 32, 32, 32, 36, 36, 36, 36, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 81, 81, 81
Offset: 1

Views

Author

Gus Wiseman, Nov 05 2024

Keywords

Comments

Perfect-powers (A001597) are numbers with a proper integer root, complement A007916.

Crossrefs

The version for prime-powers is A000015.
The union is A001597 (perfect-powers), without powers of two A377702.
Positions of last appearances are also A001597.
The version for primes is A007918 or A151800.
The version for squarefree numbers is A067535.
Run-lengths are A076412.
The opposite version (greatest perfect-power <= n) is A081676.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect-powers, differences A053289, seconds A376559.
A007916 lists the non-perfect-powers, differences A375706, seconds A376562.
A069623 counts perfect-powers <= n.
A076411 counts perfect-powers < n.
A131605 lists perfect-powers that are not prime-powers.
A377432 counts perfect-powers between primes, zeros A377436.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Table[NestWhile[#+1&,n,#>1&&!perpowQ[#]&],{n,100}]
  • Python
    from sympy import mobius, integer_nthroot
    def A377468(n):
        if n == 1: return 1
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(x-1+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        m = n-f(n-1)
        return bisection(lambda x:f(x)+m,n-1,n) # Chai Wah Wu, Nov 05 2024

Formula

Positions of first appearances for n > 2 are A216765(n-2) = A001597(n-1) + 1.

A376559 Second differences of consecutive perfect powers (A001597). First differences of A053289.

Original entry on oeis.org

1, -3, 6, 2, -7, 3, -1, 9, 2, 2, 2, 2, -17, -1, 13, 9, 2, -7, -11, 9, -5, 20, 2, -16, -1, 21, 2, 2, -15, -11, 30, 2, 2, 2, 2, 2, 2, 2, -22, -15, 41, 2, 2, 2, -36, 3, 37, 2, 2, 2, -34, -11, 49, 2, 2, -66, 45, 3, -61, 2, 83, 2, 2, 2, 2, -63, 25, 42, 2, -9, -89
Offset: 1

Views

Author

Gus Wiseman, Sep 28 2024

Keywords

Comments

Perfect-powers A007916 are numbers with a proper integer root.
Does this sequence contain zero?

Examples

			The perfect powers (A001597) are:
  1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, 169, 196, ...
with first differences (A053289):
  3, 4, 1, 7, 9, 2, 5, 4, 13, 15, 17, 19, 21, 4, 3, 16, 25, 27, 20, 9, 18, 13, ...
with first differences (A376559):
  1, -3, 6, 2, -7, 3, -1, 9, 2, 2, 2, 2, -17, -1, 13, 9, 2, -7, -11, 9, -5, 20, ...
		

Crossrefs

The version for A000002 is A376604, first differences of A054354.
For first differences we have A053289, union A023055, firsts A376268, A376519.
A000961 lists prime-powers inclusive, exclusive A246655.
A001597 lists perfect-powers, complement A007916.
A112344 counts integer partitions into perfect-powers, factorizations A294068.
For perfect-powers: A053289 (first differences), A376560 (positive curvature), A376561 (negative curvature).
For second differences: A036263 (prime), A073445 (composite), A376562 (non-perfect-power), A376590 (squarefree), A376593 (nonsquarefree), A376596 (prime-power), A376599 (non-prime-power).

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Differences[Select[Range[1000],perpowQ],2]
  • PARI
    lista(nn) = my(v = concat (1, select(ispower, [1..nn])), w = vector(#v-1, i, v[i+1] - v[i])); vector(#w-1, i, w[i+1] - w[i]); \\ Michel Marcus, Oct 02 2024
  • Python
    from sympy import mobius, integer_nthroot
    def A376559(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n-1+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        a = bisection(f,n,n)
        b = bisection(lambda x:f(x)+1,a,a)
        return a+bisection(lambda x:f(x)+2,b,b)-(b<<1) # Chai Wah Wu, Oct 02 2024
    

A377434 Numbers k such that there is a unique perfect-power x in the range prime(k) < x < prime(k+1).

Original entry on oeis.org

2, 6, 15, 18, 22, 25, 31, 34, 39, 44, 47, 48, 53, 54, 61, 66, 68, 72, 78, 85, 92, 97, 99, 105, 114, 122, 129, 137, 146, 154, 162, 168, 172, 181, 191, 200, 210, 217, 219, 228, 240, 251, 263, 269, 274, 283, 295, 306, 309, 319, 329, 342, 357, 367, 378, 393, 400
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2024

Keywords

Comments

Perfect-powers (A001597) are numbers with a proper integer root, complement A007916.

Examples

			Primes 4 and 5 are 7 and 11, and the interval (8,9,10) contains two perfect-powers (8,9), so 4 is not in the sequence.
Primes 5 and 6 are 11 and 13, and the interval (12) contains no perfect-powers, so 5 is not in the sequence.
Primes 6 and 7 are 13 and 17, and the interval (14,15,16) contains just one perfect-power (16), so 6 is in the sequence.
		

Crossrefs

For powers of 2 instead of primes see A013597, A014210, A014234, A244508, A377467.
For prime-powers we have A377287.
For squarefree numbers see A377430, A061398, A377431, A068360.
These are the positions of 1 in A377432.
For no perfect-powers we have A377436.
For more than one perfect-power we have A377466.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect-powers, differences A053289, seconds A376559.
A007916 lists the non-perfect-powers, differences A375706, seconds A376562.
A031218 gives the greatest prime-power <= n.
A046933 counts the interval from A008864(n) to A006093(n+1).
A065514 gives the greatest prime-power < prime(n), difference A377289.
A081676 gives the greatest perfect-power <= n.
A131605 lists perfect-powers that are not prime-powers.
A345531 gives the least prime-power > prime(n), difference A377281.
A366833 counts prime-powers between primes, see A053607, A304521.
A377468 gives the least perfect-power > n.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Select[Range[100],Length[Select[Range[Prime[#]+1,Prime[#+1]-1],perpowQ]]==1&]

A377466 Numbers k such that there is more than one perfect power x in the range prime(k) < x < prime(k+1).

Original entry on oeis.org

4, 9, 11, 30, 327, 445, 3512, 7789, 9361, 26519413
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2024

Keywords

Comments

Perfect powers (A001597) are numbers with a proper integer root, the complement of A007916.
Is this sequence finite?
The Redmond-Sun conjecture (see A308658) implies that this sequence is finite. - Pontus von Brömssen, Nov 05 2024

Examples

			Primes 9 and 10 are 23 and 29, and the interval (24,25,26,27,28) contains two perfect powers (25,27), so 9 is in the sequence.
		

Crossrefs

For powers of 2 see A013597, A014210, A014234, A188951, A244508, A377467.
For no prime-powers we have A377286, ones in A080101.
For a unique prime-power we have A377287.
For squarefree numbers see A377430, A061398, A377431, A068360, A224363.
These are the positions of terms > 1 in A377432.
For a unique perfect power we have A377434.
For no perfect powers we have A377436.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect powers, differences A053289, seconds A376559.
A007916 lists the non-perfect-powers, differences A375706, seconds A376562.
A046933 counts the interval from A008864(n) to A006093(n+1).
A081676 gives the greatest perfect power <= n.
A131605 lists perfect powers that are not prime-powers.
A246655 lists the prime-powers not including 1, complement A361102.
A366833 counts prime-powers between primes, see A053607, A304521.
A377468 gives the least perfect power > n.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Select[Range[100],Count[Range[Prime[#]+1, Prime[#+1]-1],_?perpowQ]>1&]
  • Python
    from itertools import islice
    from sympy import prime
    from gmpy2 import is_power, next_prime
    def A377466_gen(startvalue=1): # generator of terms >= startvalue
        k = max(startvalue,1)
        p = prime(k)
        while (q:=next_prime(p)):
            c = 0
            for i in range(p+1,q):
                if is_power(i):
                    c += 1
                    if c>1:
                        yield k
                        break
            k += 1
            p = q
    A377466_list = list(islice(A377466_gen(),9)) # Chai Wah Wu, Nov 04 2024

Formula

a(n) = A000720(A116086(n)) = A000720(A116455(n)) for n <= 10. This would hold for all n if there do not exist more than two perfect powers between any two consecutive primes, which is implied by the Redmond-Sun conjecture. - Pontus von Brömssen, Nov 05 2024

Extensions

a(10) from Pontus von Brömssen, Nov 04 2024

A378249 Least perfect power > prime(n).

Original entry on oeis.org

4, 4, 8, 8, 16, 16, 25, 25, 25, 32, 32, 49, 49, 49, 49, 64, 64, 64, 81, 81, 81, 81, 100, 100, 100, 121, 121, 121, 121, 121, 128, 144, 144, 144, 169, 169, 169, 169, 169, 196, 196, 196, 196, 196, 216, 216, 216, 225, 243, 243, 243, 243, 243, 256, 289, 289, 289
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2024

Keywords

Comments

Perfect-powers (A001597) are numbers with a proper integer root, complement A007916.
Which terms appear only once? Just 128, 225, 256, 64009, 1295044?

Examples

			The first number line below shows the perfect powers. The second shows each prime.
-1-----4-------8-9------------16----------------25--27--------32------36------------------------49--
===2=3===5===7======11==13======17==19======23==========29==31==========37======41==43======47======
		

Crossrefs

A version for prime powers (but starting with prime(k) + 1) is A345531.
Positions of last appearances are A377283, complement A377436.
Restriction of A377468 to the primes, for prime powers A000015.
The opposite is A378035, restriction of A081676.
The union is A378250.
Run lengths are A378251.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect powers, differences A053289, seconds A376559.
A007916 lists numbers that are not perfect powers, differences A375706, seconds A376562.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A131605 lists perfect powers that are not prime powers.
A377432 counts perfect powers between primes, zeros A377436, postpositives A377466.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Table[NestWhile[#+1&,Prime[n],radQ[#]&],{n,100}]
  • PARI
    f(p) = p++; while(!ispower(p), p++); p;
    lista(nn) = apply(f, primes(nn)); \\ Michel Marcus, Dec 19 2024

A378251 Number of primes between consecutive perfect powers, zeros omitted.

Original entry on oeis.org

2, 2, 2, 3, 2, 4, 3, 4, 3, 5, 1, 3, 5, 5, 3, 1, 5, 1, 7, 5, 2, 4, 6, 7, 7, 5, 2, 6, 9, 8, 7, 8, 9, 8, 8, 6, 4, 9, 10, 9, 10, 7, 2, 9, 12, 11, 12, 6, 5, 9, 12, 11, 3, 10, 8, 2, 13, 15, 10, 11, 15, 7, 9, 12, 13, 11, 12, 17, 2, 11, 16, 16, 13, 17, 15, 14, 16, 15
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2024

Keywords

Comments

First differences of A377283 and A378365. Run-lengths of A378035 and A378249.
Perfect powers (A001597) are 1 and numbers with a proper integer root, complement A007916.

Examples

			The first number line below shows the perfect powers. The second shows each prime. To get a(n) we count the primes between consecutive perfect powers, skipping the cases where there are none.
-1-----4-------8-9------------16----------------25--27--------32------36----
===2=3===5===7======11==13======17==19======23==========29==31==========37==
		

Crossrefs

Same as A080769 with 0's removed (which were at positions A274605).
First differences of A377283 and A378365 (union of A378356).
Run-lengths of A378035 (union A378253) and A378249 (union A378250).
The version for nonprime prime powers is A378373, with zeros A067871.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect powers, differences A053289, run-lengths of A377468.
A007916 lists the non-perfect powers, differences A375706.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A131605 lists perfect powers that are not prime powers.
A377432 counts perfect powers between primes, see A377434, A377436, A377466.

Programs

  • Maple
    N:= 10^6: # to use perfect powers up to N
    PP:= {1,seq(seq(i^j,j=2..ilog[i](N)),i=2..isqrt(N))}:
    PP:= sort(convert(PP,list)):
    M:= map(numtheory:-pi, PP):
    subs(0=NULL, M[2..-1]-M[1..-2]): # Robert Israel, Jan 23 2025
  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Length/@Split[Table[NestWhile[#+1&,Prime[n],radQ[#]&],{n,100}]]

A106265 Numbers a > 0 such that the Diophantine equation a + b^2 = c^3 has integer solutions b and c.

Original entry on oeis.org

1, 2, 4, 7, 8, 11, 13, 15, 18, 19, 20, 23, 25, 26, 27, 28, 35, 39, 40, 44, 45, 47, 48, 49, 53, 54, 55, 56, 60, 61, 63, 64, 67, 71, 72, 74, 76, 79, 81, 83, 87, 89, 95, 100, 104, 106, 107, 109, 112, 116, 118, 121, 124, 125, 126, 127, 128, 135, 139, 143, 146, 147, 148, 150, 151, 152, 153
Offset: 1

Views

Author

Zak Seidov, Apr 28 2005

Keywords

Comments

A given a(n) can have multiple solutions with distinct (b,c), e.g., a=4 with b=2, c=2 (4 + 2^2 = 2^3) or with b=11, c=5 (4 + 11^2 = 5^3). (See also A181138.) Sequences A106266 and A106267 list the minimal values. - M. F. Hasler, Oct 04 2013
The cubes A000578 = (1, 8, 27, 64, ...) form a subsequence of this sequence, corresponding to b=0, a=c^3. If b=0 is excluded, these terms are not present, except for a few exceptions, a = 216, 343, 12167, ... (6^3 + 28^2 = 10^3, 7^3 + 13^2 = 8^3, 23^3 + 588^2 = 71^3, ...), cf. A038597 for the possible b-values. - M. F. Hasler, Oct 05 2013
This is the complement of A081121. The values do indeed correspond to solutions listed in Gebel's file. - M. F. Hasler, Oct 05 2013
B-file corrected following a remark by Alois P. Heinz, May 24 2019. A double-check would be appreciated in view of two values that were missing, for unknown reasons, in the earlier version of the b-file. - M. F. Hasler, Aug 10 2024

Examples

			a = 1,2,4,7,8,11,13,15,18,19,20,23,25,26,27,28,35,39,40,44,45,47,48,49,53, ...
b = 0,5,2,1,0, 4,70, 7, 3,18,14, 2,10, 1, 0, 6,36, 5,52, 9,96,13,4,524,26, ...
c = 1,3,2,2,2, 3,17, 4, 3, 7, 6, 3, 5, 3, 3, 4,11, 4,14, 5,21, 6, 4,65, 9, ...
Here are the values grouped together:
{{1, 0, 1}, {2, 5, 3}, {4, 2, 2}, {7, 1, 2}, {8, 0, 2}, {11, 4, 3}, {13, 70, 17}, {15, 7, 4}, {18, 3, 3}, {19, 18, 7}, {20, 14, 6}, {23, 2, 3}, {25, 10, 5}, {26, 1, 3}, {27, 0, 3}, {28, 6, 4}, {35, 36, 11}, {39, 5, 4}, {40, 52, 14}, {44, 9, 5}, {45, 96, 21}, {47, 13, 6}, {48, 4, 4}, {49, 524, 65}, {53, 26, 9}, {54, 17, 7}, {55, 3, 4}, {56, 76, 18}, {60, 2, 4}, {61, 8, 5}, {63, 1, 4}, {64, 0, 4}, {67, 110, 23}, {71, 21, 8}, ... }
a(2243) = 10000 = 25^3 - 75^2. - _M. F. Hasler_, Oct 05 2013, index corrected Aug 10 2024
a(136) = 366 = 11815^3 - 1284253^2 (has c/a(n) ~ 32.3); a(939) = 3607 = 244772^3 - 121099571^2 (has c/a(n) ~ 67.9); a(1090) = 4265 = 84521^3 - 24572364^2 (has c/a(n) ~ 19.8). - _M. F. Hasler_, Aug 10 2024
		

Crossrefs

Cf. A106266, A106267 for respective minimal values of b and c.
Cf. A023055: (Apparent) differences between adjacent perfect powers (integers of form a^b, a >= 1, b >= 2); A076438: n which appear to have a unique representation as the difference of two perfect powers; that is, there is only one solution to Pillai's equation a^x - b^y = n, with a>0, b>0, x>1, y>1; A076440: n which appear to have a unique representation as the difference of two perfect powers and one of those powers is odd; that is, there is only one solution to Pillai's equation a^x - b^y = n, with a>0, b>0, x>1, y>1 and that solution has odd x or odd y (or both odd); A075772: Difference between n-th perfect power and the closest perfect power, etc.

Programs

  • Mathematica
    f[n_] := Block[{k = Floor[n^(1/3) + 1]}, While[k < 10^6 && !IntegerQ[ Sqrt[k^3 - n]], k++ ]; If[k == 10^6, 0, k]]; Select[ Range[ 154], f[ # ] != 0 &] (* Robert G. Wilson v, Apr 28 2005 *)
  • PARI
    select( {is_A106265(a, L=99)=for(c=sqrtnint(a, 3), (a+9)*L, issquare(c^3-a, &b) && return(c))}, [1..199]) \\ The function is_A106265 returns 0 if n isn't a term, or else the c-value (A106267) which can't be zero if n is a term. The L-value can be used to increase the search limit but so far no instance is known that requires L>68. - M. F. Hasler, Aug 10 2024

Formula

a(n) = A106267(n)^3 - A106266(n)^2.

Extensions

More terms from Robert G. Wilson v, Apr 28 2005
Definition corrected, solutions with b=0 added by M. F. Hasler, Sep 30 2013

A378250 Perfect-powers x > 1 such that it is not possible to choose a prime y and a perfect-power z satisfying x > y > z.

Original entry on oeis.org

4, 8, 16, 25, 32, 49, 64, 81, 100, 121, 128, 144, 169, 196, 216, 225, 243, 256, 289, 324, 343, 361, 400, 441, 484, 512, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1000, 1024, 1089, 1156, 1225, 1296, 1331, 1369, 1444, 1521, 1600, 1681, 1728, 1764, 1849, 1936
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2024

Keywords

Comments

Perfect-powers (A001597) are numbers with a proper integer root, complement A007916.

Examples

			The first number line below shows the perfect-powers. The second shows the primes. The third is a(n).
-1-----4-------8-9------------16----------------25--27--------32------36----
===2=3===5===7======11==13======17==19======23==========29==31==========37==
       4       8              16                25            32
The terms together with their prime indices begin:
     4: {1,1}
     8: {1,1,1}
    16: {1,1,1,1}
    25: {3,3}
    32: {1,1,1,1,1}
    49: {4,4}
    64: {1,1,1,1,1,1}
    81: {2,2,2,2}
   100: {1,1,3,3}
   121: {5,5}
   128: {1,1,1,1,1,1,1}
   144: {1,1,1,1,2,2}
   169: {6,6}
   196: {1,1,4,4}
   216: {1,1,1,2,2,2}
   225: {2,2,3,3}
   243: {2,2,2,2,2}
   256: {1,1,1,1,1,1,1,1}
		

Crossrefs

A version for prime-powers (but starting with prime(k) + 1) is A345531.
The opposite is union of A378035, restriction of A081676.
Union of A378249, run-lengths are A378251.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect-powers, differences A053289, seconds A376559.
A007916 lists the non-perfect-powers, differences A375706, seconds A376562.
A069623 counts perfect-powers <= n.
A076411 counts perfect-powers < n.
A131605 lists perfect-powers that are not prime-powers.
A377432 counts perfect-powers between primes, zeros A377436, positive A377283, postpositive A377466.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Union[Table[NestWhile[#+1&,Prime[n],radQ[#]&],{n,100}]]
Showing 1-10 of 28 results. Next